Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubccat.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
2 |
|
mrsubccat.r |
⊢ 𝑅 = ( mREx ‘ 𝑇 ) |
3 |
|
mrsubcn.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
4 |
|
mrsubcn.c |
⊢ 𝐶 = ( mCN ‘ 𝑇 ) |
5 |
1 2
|
mrsubf |
⊢ ( 𝐹 ∈ ran 𝑆 → 𝐹 : 𝑅 ⟶ 𝑅 ) |
6 |
1 2 3 4
|
mrsubcn |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ) → ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
7 |
6
|
ralrimiva |
⊢ ( 𝐹 ∈ ran 𝑆 → ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
8 |
1 2
|
mrsubccat |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
8
|
3expb |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
9
|
ralrimivva |
⊢ ( 𝐹 ∈ ran 𝑆 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) |
11 |
5 7 10
|
3jca |
⊢ ( 𝐹 ∈ ran 𝑆 → ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) |
12 |
4 3 2
|
mrexval |
⊢ ( 𝑇 ∈ 𝑊 → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
14 |
|
s1eq |
⊢ ( 𝑤 = 𝑣 → 〈“ 𝑤 ”〉 = 〈“ 𝑣 ”〉 ) |
15 |
14
|
fveq2d |
⊢ ( 𝑤 = 𝑣 → ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) = ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
16 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) = ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) |
17 |
|
fvex |
⊢ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ∈ V |
18 |
15 16 17
|
fvmpt |
⊢ ( 𝑣 ∈ 𝑉 → ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) = ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) = ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
20 |
|
difun2 |
⊢ ( ( 𝐶 ∪ 𝑉 ) ∖ 𝑉 ) = ( 𝐶 ∖ 𝑉 ) |
21 |
20
|
eleq2i |
⊢ ( 𝑣 ∈ ( ( 𝐶 ∪ 𝑉 ) ∖ 𝑉 ) ↔ 𝑣 ∈ ( 𝐶 ∖ 𝑉 ) ) |
22 |
|
eldif |
⊢ ( 𝑣 ∈ ( ( 𝐶 ∪ 𝑉 ) ∖ 𝑉 ) ↔ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ∧ ¬ 𝑣 ∈ 𝑉 ) ) |
23 |
21 22
|
bitr3i |
⊢ ( 𝑣 ∈ ( 𝐶 ∖ 𝑉 ) ↔ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ∧ ¬ 𝑣 ∈ 𝑉 ) ) |
24 |
|
simpr2 |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
25 |
|
s1eq |
⊢ ( 𝑐 = 𝑣 → 〈“ 𝑐 ”〉 = 〈“ 𝑣 ”〉 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑐 = 𝑣 → ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
27 |
26 25
|
eqeq12d |
⊢ ( 𝑐 = 𝑣 → ( ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ↔ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) = 〈“ 𝑣 ”〉 ) ) |
28 |
27
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ 𝑣 ∈ ( 𝐶 ∖ 𝑉 ) ) → ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) = 〈“ 𝑣 ”〉 ) |
29 |
24 28
|
sylan |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∖ 𝑉 ) ) → ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) = 〈“ 𝑣 ”〉 ) |
30 |
23 29
|
sylan2br |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ∧ ¬ 𝑣 ∈ 𝑉 ) ) → ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) = 〈“ 𝑣 ”〉 ) |
31 |
30
|
anassrs |
⊢ ( ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ ¬ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) = 〈“ 𝑣 ”〉 ) |
32 |
31
|
eqcomd |
⊢ ( ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) ∧ ¬ 𝑣 ∈ 𝑉 ) → 〈“ 𝑣 ”〉 = ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
33 |
19 32
|
ifeqda |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → if ( 𝑣 ∈ 𝑉 , ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) = ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
34 |
33
|
mpteq2dva |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝑉 , ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ) |
35 |
34
|
coeq1d |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝑉 , ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) = ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) |
36 |
35
|
oveq2d |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝑉 , ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) = ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) ) |
37 |
13 36
|
mpteq12dv |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑟 ∈ 𝑅 ↦ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝑉 , ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) ) = ( 𝑟 ∈ Word ( 𝐶 ∪ 𝑉 ) ↦ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) ) ) |
38 |
|
elun2 |
⊢ ( 𝑣 ∈ 𝑉 → 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) |
39 |
|
simplr1 |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → 𝐹 : 𝑅 ⟶ 𝑅 ) |
40 |
|
simpr |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) |
41 |
40
|
s1cld |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → 〈“ 𝑣 ”〉 ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
42 |
12
|
ad2antrr |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
43 |
41 42
|
eleqtrrd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → 〈“ 𝑣 ”〉 ∈ 𝑅 ) |
44 |
39 43
|
ffvelrnd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ∈ 𝑅 ) |
45 |
38 44
|
sylan2 |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ∈ 𝑅 ) |
46 |
15
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) = ( 𝑣 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
47 |
45 46
|
fmptd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) : 𝑉 ⟶ 𝑅 ) |
48 |
|
ssid |
⊢ 𝑉 ⊆ 𝑉 |
49 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) = ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) |
50 |
4 3 2 1 49
|
mrsubfval |
⊢ ( ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ) → ( 𝑆 ‘ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ) = ( 𝑟 ∈ 𝑅 ↦ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝑉 , ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) ) ) |
51 |
47 48 50
|
sylancl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑆 ‘ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ) = ( 𝑟 ∈ 𝑅 ↦ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ if ( 𝑣 ∈ 𝑉 , ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) ) ) |
52 |
4
|
fvexi |
⊢ 𝐶 ∈ V |
53 |
3
|
fvexi |
⊢ 𝑉 ∈ V |
54 |
52 53
|
unex |
⊢ ( 𝐶 ∪ 𝑉 ) ∈ V |
55 |
49
|
frmdmnd |
⊢ ( ( 𝐶 ∪ 𝑉 ) ∈ V → ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd ) |
56 |
54 55
|
ax-mp |
⊢ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd |
57 |
56
|
a1i |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd ) |
58 |
54
|
a1i |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝐶 ∪ 𝑉 ) ∈ V ) |
59 |
44 42
|
eleqtrd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
60 |
59
|
fmpttd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) : ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) |
61 |
|
simpr1 |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝑅 ⟶ 𝑅 ) |
62 |
13 13
|
feq23d |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝐹 : 𝑅 ⟶ 𝑅 ↔ 𝐹 : Word ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) ) |
63 |
61 62
|
mpbid |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 : Word ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) |
64 |
|
simpr3 |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) |
65 |
|
simprl |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑅 ) |
66 |
12
|
adantr |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑅 = Word ( 𝐶 ∪ 𝑉 ) ) |
68 |
65 67
|
eleqtrd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
69 |
|
simprr |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑅 ) |
70 |
69 67
|
eleqtrd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
71 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) |
72 |
49 71
|
frmdbas |
⊢ ( ( 𝐶 ∪ 𝑉 ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = Word ( 𝐶 ∪ 𝑉 ) ) |
73 |
54 72
|
ax-mp |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = Word ( 𝐶 ∪ 𝑉 ) |
74 |
73
|
eqcomi |
⊢ Word ( 𝐶 ∪ 𝑉 ) = ( Base ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) |
75 |
|
eqid |
⊢ ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) |
76 |
49 74 75
|
frmdadd |
⊢ ( ( 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ∧ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
77 |
68 70 76
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
78 |
77
|
fveq2d |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) ) |
79 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ 𝑥 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑅 ) |
80 |
79
|
ad2ant2lr |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑅 ) |
81 |
80 67
|
eleqtrd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
82 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑅 ) |
83 |
82
|
ad2ant2l |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑅 ) |
84 |
83 67
|
eleqtrd |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
85 |
49 74 75
|
frmdadd |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) |
86 |
81 84 85
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) |
87 |
78 86
|
eqeq12d |
⊢ ( ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) |
88 |
87
|
2ralbidva |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) |
89 |
66
|
raleqdv |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) → ( ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
90 |
66 89
|
raleqbidv |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ∀ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
91 |
88 90
|
bitr3d |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝐹 : 𝑅 ⟶ 𝑅 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ∀ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
92 |
91
|
3ad2antr1 |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ∀ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
93 |
64 92
|
mpbid |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ∀ 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ∀ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
94 |
|
wrd0 |
⊢ ∅ ∈ Word ( 𝐶 ∪ 𝑉 ) |
95 |
|
ffvelrn |
⊢ ( ( 𝐹 : Word ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ∧ ∅ ∈ Word ( 𝐶 ∪ 𝑉 ) ) → ( 𝐹 ‘ ∅ ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
96 |
63 94 95
|
sylancl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ∅ ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) |
97 |
|
lencl |
⊢ ( ( 𝐹 ‘ ∅ ) ∈ Word ( 𝐶 ∪ 𝑉 ) → ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) ∈ ℕ0 ) |
98 |
96 97
|
syl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) ∈ ℕ0 ) |
99 |
98
|
nn0cnd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) ∈ ℂ ) |
100 |
|
0cnd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 0 ∈ ℂ ) |
101 |
99
|
addid1d |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) + 0 ) = ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) ) |
102 |
94 13
|
eleqtrrid |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ∅ ∈ 𝑅 ) |
103 |
|
fvoveq1 |
⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( 𝐹 ‘ ( ∅ ++ 𝑦 ) ) ) |
104 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ∅ ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ 𝑦 ) ) ) |
106 |
103 105
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ∅ ++ 𝑦 ) ) = ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) |
107 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( ∅ ++ 𝑦 ) = ( ∅ ++ ∅ ) ) |
108 |
|
ccatidid |
⊢ ( ∅ ++ ∅ ) = ∅ |
109 |
107 108
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( ∅ ++ 𝑦 ) = ∅ ) |
110 |
109
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ ( ∅ ++ 𝑦 ) ) = ( 𝐹 ‘ ∅ ) ) |
111 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) |
112 |
111
|
oveq2d |
⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ ∅ ) ) ) |
113 |
110 112
|
eqeq12d |
⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ ( ∅ ++ 𝑦 ) ) = ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ∅ ) = ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ ∅ ) ) ) ) |
114 |
106 113
|
rspc2va |
⊢ ( ( ( ∅ ∈ 𝑅 ∧ ∅ ∈ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ∅ ) = ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ ∅ ) ) ) |
115 |
102 102 64 114
|
syl21anc |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ∅ ) = ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ ∅ ) ) ) |
116 |
115
|
fveq2d |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) = ( ♯ ‘ ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ ∅ ) ) ) ) |
117 |
|
ccatlen |
⊢ ( ( ( 𝐹 ‘ ∅ ) ∈ Word ( 𝐶 ∪ 𝑉 ) ∧ ( 𝐹 ‘ ∅ ) ∈ Word ( 𝐶 ∪ 𝑉 ) ) → ( ♯ ‘ ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ ∅ ) ) ) = ( ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) + ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) ) ) |
118 |
96 96 117
|
syl2anc |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ♯ ‘ ( ( 𝐹 ‘ ∅ ) ++ ( 𝐹 ‘ ∅ ) ) ) = ( ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) + ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) ) ) |
119 |
101 116 118
|
3eqtrrd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) + ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) ) = ( ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) + 0 ) ) |
120 |
99 99 100 119
|
addcanad |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) = 0 ) |
121 |
|
fvex |
⊢ ( 𝐹 ‘ ∅ ) ∈ V |
122 |
|
hasheq0 |
⊢ ( ( 𝐹 ‘ ∅ ) ∈ V → ( ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) = 0 ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
123 |
121 122
|
ax-mp |
⊢ ( ( ♯ ‘ ( 𝐹 ‘ ∅ ) ) = 0 ↔ ( 𝐹 ‘ ∅ ) = ∅ ) |
124 |
120 123
|
sylib |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ∅ ) = ∅ ) |
125 |
56 56
|
pm3.2i |
⊢ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd ∧ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd ) |
126 |
49
|
frmd0 |
⊢ ∅ = ( 0g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) |
127 |
74 74 75 75 126 126
|
ismhm |
⊢ ( 𝐹 ∈ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) MndHom ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ↔ ( ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd ∧ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd ) ∧ ( 𝐹 : Word ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ∧ ∀ 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ∀ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ∅ ) = ∅ ) ) ) |
128 |
125 127
|
mpbiran |
⊢ ( 𝐹 ∈ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) MndHom ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ↔ ( 𝐹 : Word ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ∧ ∀ 𝑥 ∈ Word ( 𝐶 ∪ 𝑉 ) ∀ 𝑦 ∈ Word ( 𝐶 ∪ 𝑉 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
129 |
63 93 124 128
|
syl3anbrc |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 ∈ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) MndHom ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ) |
130 |
|
eqid |
⊢ ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) = ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) |
131 |
130
|
vrmdf |
⊢ ( ( 𝐶 ∪ 𝑉 ) ∈ V → ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) : ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) |
132 |
54 131
|
ax-mp |
⊢ ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) : ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) |
133 |
|
fcompt |
⊢ ( ( 𝐹 : Word ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ∧ ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) : ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) → ( 𝐹 ∘ ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ ( ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ‘ 𝑣 ) ) ) ) |
134 |
63 132 133
|
sylancl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝐹 ∘ ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ ( ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ‘ 𝑣 ) ) ) ) |
135 |
130
|
vrmdval |
⊢ ( ( ( 𝐶 ∪ 𝑉 ) ∈ V ∧ 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ) → ( ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ‘ 𝑣 ) = 〈“ 𝑣 ”〉 ) |
136 |
54 135
|
mpan |
⊢ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) → ( ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ‘ 𝑣 ) = 〈“ 𝑣 ”〉 ) |
137 |
136
|
fveq2d |
⊢ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) → ( 𝐹 ‘ ( ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ‘ 𝑣 ) ) = ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
138 |
137
|
mpteq2ia |
⊢ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ ( ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ‘ 𝑣 ) ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) |
139 |
134 138
|
eqtrdi |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝐹 ∘ ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ) |
140 |
49 74 130
|
frmdup3lem |
⊢ ( ( ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ∈ Mnd ∧ ( 𝐶 ∪ 𝑉 ) ∈ V ∧ ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) : ( 𝐶 ∪ 𝑉 ) ⟶ Word ( 𝐶 ∪ 𝑉 ) ) ∧ ( 𝐹 ∈ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) MndHom ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) ∧ ( 𝐹 ∘ ( varFMnd ‘ ( 𝐶 ∪ 𝑉 ) ) ) = ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ) ) → 𝐹 = ( 𝑟 ∈ Word ( 𝐶 ∪ 𝑉 ) ↦ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) ) ) |
141 |
57 58 60 129 139 140
|
syl32anc |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 = ( 𝑟 ∈ Word ( 𝐶 ∪ 𝑉 ) ↦ ( ( freeMnd ‘ ( 𝐶 ∪ 𝑉 ) ) Σg ( ( 𝑣 ∈ ( 𝐶 ∪ 𝑉 ) ↦ ( 𝐹 ‘ 〈“ 𝑣 ”〉 ) ) ∘ 𝑟 ) ) ) ) |
142 |
37 51 141
|
3eqtr4rd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 = ( 𝑆 ‘ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ) ) |
143 |
3 2 1
|
mrsubff |
⊢ ( 𝑇 ∈ 𝑊 → 𝑆 : ( 𝑅 ↑pm 𝑉 ) ⟶ ( 𝑅 ↑m 𝑅 ) ) |
144 |
143
|
ffnd |
⊢ ( 𝑇 ∈ 𝑊 → 𝑆 Fn ( 𝑅 ↑pm 𝑉 ) ) |
145 |
144
|
adantr |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑆 Fn ( 𝑅 ↑pm 𝑉 ) ) |
146 |
2
|
fvexi |
⊢ 𝑅 ∈ V |
147 |
|
elpm2r |
⊢ ( ( ( 𝑅 ∈ V ∧ 𝑉 ∈ V ) ∧ ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ) ) → ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ∈ ( 𝑅 ↑pm 𝑉 ) ) |
148 |
146 53 147
|
mpanl12 |
⊢ ( ( ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) : 𝑉 ⟶ 𝑅 ∧ 𝑉 ⊆ 𝑉 ) → ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ∈ ( 𝑅 ↑pm 𝑉 ) ) |
149 |
47 48 148
|
sylancl |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ∈ ( 𝑅 ↑pm 𝑉 ) ) |
150 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn ( 𝑅 ↑pm 𝑉 ) ∧ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ∈ ( 𝑅 ↑pm 𝑉 ) ) → ( 𝑆 ‘ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ) ∈ ran 𝑆 ) |
151 |
145 149 150
|
syl2anc |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑆 ‘ ( 𝑤 ∈ 𝑉 ↦ ( 𝐹 ‘ 〈“ 𝑤 ”〉 ) ) ) ∈ ran 𝑆 ) |
152 |
142 151
|
eqeltrd |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 ∈ ran 𝑆 ) |
153 |
152
|
ex |
⊢ ( 𝑇 ∈ 𝑊 → ( ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 ∈ ran 𝑆 ) ) |
154 |
11 153
|
impbid2 |
⊢ ( 𝑇 ∈ 𝑊 → ( 𝐹 ∈ ran 𝑆 ↔ ( 𝐹 : 𝑅 ⟶ 𝑅 ∧ ∀ 𝑐 ∈ ( 𝐶 ∖ 𝑉 ) ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝐹 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ++ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |