| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubco.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
| 2 |
|
eqid |
⊢ ( mREx ‘ 𝑇 ) = ( mREx ‘ 𝑇 ) |
| 3 |
1 2
|
mrsubf |
⊢ ( 𝐹 ∈ ran 𝑆 → 𝐹 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → 𝐹 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 5 |
1 2
|
mrsubf |
⊢ ( 𝐺 ∈ ran 𝑆 → 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 7 |
|
fco |
⊢ ( ( 𝐹 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → ( 𝐹 ∘ 𝐺 ) : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 9 |
6
|
adantr |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 10 |
|
eldifi |
⊢ ( 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) → 𝑐 ∈ ( mCN ‘ 𝑇 ) ) |
| 11 |
|
elun1 |
⊢ ( 𝑐 ∈ ( mCN ‘ 𝑇 ) → 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) → 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 14 |
13
|
s1cld |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → 〈“ 𝑐 ”〉 ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 15 |
|
n0i |
⊢ ( 𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅ ) |
| 16 |
1
|
rnfvprc |
⊢ ( ¬ 𝑇 ∈ V → ran 𝑆 = ∅ ) |
| 17 |
15 16
|
nsyl2 |
⊢ ( 𝐹 ∈ ran 𝑆 → 𝑇 ∈ V ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → 𝑇 ∈ V ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → 𝑇 ∈ V ) |
| 20 |
|
eqid |
⊢ ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 ) |
| 21 |
|
eqid |
⊢ ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 ) |
| 22 |
20 21 2
|
mrexval |
⊢ ( 𝑇 ∈ V → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 23 |
19 22
|
syl |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 24 |
14 23
|
eleqtrrd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → 〈“ 𝑐 ”〉 ∈ ( mREx ‘ 𝑇 ) ) |
| 25 |
|
fvco3 |
⊢ ( ( 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ 〈“ 𝑐 ”〉 ∈ ( mREx ‘ 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 〈“ 𝑐 ”〉 ) = ( 𝐹 ‘ ( 𝐺 ‘ 〈“ 𝑐 ”〉 ) ) ) |
| 26 |
9 24 25
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 〈“ 𝑐 ”〉 ) = ( 𝐹 ‘ ( 𝐺 ‘ 〈“ 𝑐 ”〉 ) ) ) |
| 27 |
1 2 21 20
|
mrsubcn |
⊢ ( ( 𝐺 ∈ ran 𝑆 ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( 𝐺 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
| 28 |
27
|
adantll |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( 𝐺 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
| 29 |
28
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 〈“ 𝑐 ”〉 ) ) = ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) ) |
| 30 |
1 2 21 20
|
mrsubcn |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( 𝐹 ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
| 32 |
26 29 31
|
3eqtrd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → ∀ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ( ( 𝐹 ∘ 𝐺 ) ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ) |
| 34 |
1 2
|
mrsubccat |
⊢ ( ( 𝐺 ∈ ran 𝑆 ∧ 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) → ( 𝐺 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ++ ( 𝐺 ‘ 𝑦 ) ) ) |
| 35 |
34
|
3expb |
⊢ ( ( 𝐺 ∈ ran 𝑆 ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝐺 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ++ ( 𝐺 ‘ 𝑦 ) ) ) |
| 36 |
35
|
adantll |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝐺 ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ++ ( 𝐺 ‘ 𝑦 ) ) ) |
| 37 |
36
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ++ 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ++ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 38 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → 𝐹 ∈ ran 𝑆 ) |
| 39 |
6
|
adantr |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
| 40 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → 𝑥 ∈ ( mREx ‘ 𝑇 ) ) |
| 41 |
39 40
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( mREx ‘ 𝑇 ) ) |
| 42 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → 𝑦 ∈ ( mREx ‘ 𝑇 ) ) |
| 43 |
39 42
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( mREx ‘ 𝑇 ) ) |
| 44 |
1 2
|
mrsubccat |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( mREx ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( mREx ‘ 𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ++ ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ++ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 45 |
38 41 43 44
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ++ ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ++ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 46 |
37 45
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ++ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ++ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 47 |
18 22
|
syl |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 49 |
40 48
|
eleqtrd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → 𝑥 ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 50 |
42 48
|
eleqtrd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → 𝑦 ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 51 |
|
ccatcl |
⊢ ( ( 𝑥 ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ∧ 𝑦 ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 52 |
49 50 51
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
| 53 |
52 48
|
eleqtrrd |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( 𝑥 ++ 𝑦 ) ∈ ( mREx ‘ 𝑇 ) ) |
| 54 |
|
fvco3 |
⊢ ( ( 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ ( 𝑥 ++ 𝑦 ) ∈ ( mREx ‘ 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ++ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ++ 𝑦 ) ) ) ) |
| 55 |
39 53 54
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ++ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ++ 𝑦 ) ) ) ) |
| 56 |
|
fvco3 |
⊢ ( ( 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ 𝑥 ∈ ( mREx ‘ 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 57 |
39 40 56
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 58 |
|
fvco3 |
⊢ ( ( 𝐺 : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 59 |
39 42 58
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 60 |
57 59
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ++ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ++ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 61 |
46 55 60
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) ∧ ( 𝑥 ∈ ( mREx ‘ 𝑇 ) ∧ 𝑦 ∈ ( mREx ‘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ++ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 62 |
61
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → ∀ 𝑥 ∈ ( mREx ‘ 𝑇 ) ∀ 𝑦 ∈ ( mREx ‘ 𝑇 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ++ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 63 |
1 2 21 20
|
elmrsubrn |
⊢ ( 𝑇 ∈ V → ( ( 𝐹 ∘ 𝐺 ) ∈ ran 𝑆 ↔ ( ( 𝐹 ∘ 𝐺 ) : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ ∀ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ( ( 𝐹 ∘ 𝐺 ) ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ ( mREx ‘ 𝑇 ) ∀ 𝑦 ∈ ( mREx ‘ 𝑇 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ++ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 64 |
18 63
|
syl |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ran 𝑆 ↔ ( ( 𝐹 ∘ 𝐺 ) : ( mREx ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ ∀ 𝑐 ∈ ( ( mCN ‘ 𝑇 ) ∖ ( mVR ‘ 𝑇 ) ) ( ( 𝐹 ∘ 𝐺 ) ‘ 〈“ 𝑐 ”〉 ) = 〈“ 𝑐 ”〉 ∧ ∀ 𝑥 ∈ ( mREx ‘ 𝑇 ) ∀ 𝑦 ∈ ( mREx ‘ 𝑇 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ++ 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ++ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 65 |
8 33 62 64
|
mpbir3and |
⊢ ( ( 𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆 ) → ( 𝐹 ∘ 𝐺 ) ∈ ran 𝑆 ) |