Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubco.s |
|- S = ( mRSubst ` T ) |
2 |
|
eqid |
|- ( mREx ` T ) = ( mREx ` T ) |
3 |
1 2
|
mrsubf |
|- ( F e. ran S -> F : ( mREx ` T ) --> ( mREx ` T ) ) |
4 |
3
|
adantr |
|- ( ( F e. ran S /\ G e. ran S ) -> F : ( mREx ` T ) --> ( mREx ` T ) ) |
5 |
1 2
|
mrsubf |
|- ( G e. ran S -> G : ( mREx ` T ) --> ( mREx ` T ) ) |
6 |
5
|
adantl |
|- ( ( F e. ran S /\ G e. ran S ) -> G : ( mREx ` T ) --> ( mREx ` T ) ) |
7 |
|
fco |
|- ( ( F : ( mREx ` T ) --> ( mREx ` T ) /\ G : ( mREx ` T ) --> ( mREx ` T ) ) -> ( F o. G ) : ( mREx ` T ) --> ( mREx ` T ) ) |
8 |
4 6 7
|
syl2anc |
|- ( ( F e. ran S /\ G e. ran S ) -> ( F o. G ) : ( mREx ` T ) --> ( mREx ` T ) ) |
9 |
6
|
adantr |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> G : ( mREx ` T ) --> ( mREx ` T ) ) |
10 |
|
eldifi |
|- ( c e. ( ( mCN ` T ) \ ( mVR ` T ) ) -> c e. ( mCN ` T ) ) |
11 |
|
elun1 |
|- ( c e. ( mCN ` T ) -> c e. ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
12 |
10 11
|
syl |
|- ( c e. ( ( mCN ` T ) \ ( mVR ` T ) ) -> c e. ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
13 |
12
|
adantl |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> c e. ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
14 |
13
|
s1cld |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> <" c "> e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
15 |
|
n0i |
|- ( F e. ran S -> -. ran S = (/) ) |
16 |
1
|
rnfvprc |
|- ( -. T e. _V -> ran S = (/) ) |
17 |
15 16
|
nsyl2 |
|- ( F e. ran S -> T e. _V ) |
18 |
17
|
adantr |
|- ( ( F e. ran S /\ G e. ran S ) -> T e. _V ) |
19 |
18
|
adantr |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> T e. _V ) |
20 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
21 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
22 |
20 21 2
|
mrexval |
|- ( T e. _V -> ( mREx ` T ) = Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
23 |
19 22
|
syl |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( mREx ` T ) = Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
24 |
14 23
|
eleqtrrd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> <" c "> e. ( mREx ` T ) ) |
25 |
|
fvco3 |
|- ( ( G : ( mREx ` T ) --> ( mREx ` T ) /\ <" c "> e. ( mREx ` T ) ) -> ( ( F o. G ) ` <" c "> ) = ( F ` ( G ` <" c "> ) ) ) |
26 |
9 24 25
|
syl2anc |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( ( F o. G ) ` <" c "> ) = ( F ` ( G ` <" c "> ) ) ) |
27 |
1 2 21 20
|
mrsubcn |
|- ( ( G e. ran S /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( G ` <" c "> ) = <" c "> ) |
28 |
27
|
adantll |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( G ` <" c "> ) = <" c "> ) |
29 |
28
|
fveq2d |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( F ` ( G ` <" c "> ) ) = ( F ` <" c "> ) ) |
30 |
1 2 21 20
|
mrsubcn |
|- ( ( F e. ran S /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( F ` <" c "> ) = <" c "> ) |
31 |
30
|
adantlr |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( F ` <" c "> ) = <" c "> ) |
32 |
26 29 31
|
3eqtrd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ) -> ( ( F o. G ) ` <" c "> ) = <" c "> ) |
33 |
32
|
ralrimiva |
|- ( ( F e. ran S /\ G e. ran S ) -> A. c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ( ( F o. G ) ` <" c "> ) = <" c "> ) |
34 |
1 2
|
mrsubccat |
|- ( ( G e. ran S /\ x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) -> ( G ` ( x ++ y ) ) = ( ( G ` x ) ++ ( G ` y ) ) ) |
35 |
34
|
3expb |
|- ( ( G e. ran S /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( G ` ( x ++ y ) ) = ( ( G ` x ) ++ ( G ` y ) ) ) |
36 |
35
|
adantll |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( G ` ( x ++ y ) ) = ( ( G ` x ) ++ ( G ` y ) ) ) |
37 |
36
|
fveq2d |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( F ` ( G ` ( x ++ y ) ) ) = ( F ` ( ( G ` x ) ++ ( G ` y ) ) ) ) |
38 |
|
simpll |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> F e. ran S ) |
39 |
6
|
adantr |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> G : ( mREx ` T ) --> ( mREx ` T ) ) |
40 |
|
simprl |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> x e. ( mREx ` T ) ) |
41 |
39 40
|
ffvelrnd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( G ` x ) e. ( mREx ` T ) ) |
42 |
|
simprr |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> y e. ( mREx ` T ) ) |
43 |
39 42
|
ffvelrnd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( G ` y ) e. ( mREx ` T ) ) |
44 |
1 2
|
mrsubccat |
|- ( ( F e. ran S /\ ( G ` x ) e. ( mREx ` T ) /\ ( G ` y ) e. ( mREx ` T ) ) -> ( F ` ( ( G ` x ) ++ ( G ` y ) ) ) = ( ( F ` ( G ` x ) ) ++ ( F ` ( G ` y ) ) ) ) |
45 |
38 41 43 44
|
syl3anc |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( F ` ( ( G ` x ) ++ ( G ` y ) ) ) = ( ( F ` ( G ` x ) ) ++ ( F ` ( G ` y ) ) ) ) |
46 |
37 45
|
eqtrd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( F ` ( G ` ( x ++ y ) ) ) = ( ( F ` ( G ` x ) ) ++ ( F ` ( G ` y ) ) ) ) |
47 |
18 22
|
syl |
|- ( ( F e. ran S /\ G e. ran S ) -> ( mREx ` T ) = Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
48 |
47
|
adantr |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( mREx ` T ) = Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
49 |
40 48
|
eleqtrd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> x e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
50 |
42 48
|
eleqtrd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> y e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
51 |
|
ccatcl |
|- ( ( x e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) /\ y e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) -> ( x ++ y ) e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
52 |
49 50 51
|
syl2anc |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( x ++ y ) e. Word ( ( mCN ` T ) u. ( mVR ` T ) ) ) |
53 |
52 48
|
eleqtrrd |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( x ++ y ) e. ( mREx ` T ) ) |
54 |
|
fvco3 |
|- ( ( G : ( mREx ` T ) --> ( mREx ` T ) /\ ( x ++ y ) e. ( mREx ` T ) ) -> ( ( F o. G ) ` ( x ++ y ) ) = ( F ` ( G ` ( x ++ y ) ) ) ) |
55 |
39 53 54
|
syl2anc |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( ( F o. G ) ` ( x ++ y ) ) = ( F ` ( G ` ( x ++ y ) ) ) ) |
56 |
|
fvco3 |
|- ( ( G : ( mREx ` T ) --> ( mREx ` T ) /\ x e. ( mREx ` T ) ) -> ( ( F o. G ) ` x ) = ( F ` ( G ` x ) ) ) |
57 |
39 40 56
|
syl2anc |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( ( F o. G ) ` x ) = ( F ` ( G ` x ) ) ) |
58 |
|
fvco3 |
|- ( ( G : ( mREx ` T ) --> ( mREx ` T ) /\ y e. ( mREx ` T ) ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
59 |
39 42 58
|
syl2anc |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
60 |
57 59
|
oveq12d |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( ( ( F o. G ) ` x ) ++ ( ( F o. G ) ` y ) ) = ( ( F ` ( G ` x ) ) ++ ( F ` ( G ` y ) ) ) ) |
61 |
46 55 60
|
3eqtr4d |
|- ( ( ( F e. ran S /\ G e. ran S ) /\ ( x e. ( mREx ` T ) /\ y e. ( mREx ` T ) ) ) -> ( ( F o. G ) ` ( x ++ y ) ) = ( ( ( F o. G ) ` x ) ++ ( ( F o. G ) ` y ) ) ) |
62 |
61
|
ralrimivva |
|- ( ( F e. ran S /\ G e. ran S ) -> A. x e. ( mREx ` T ) A. y e. ( mREx ` T ) ( ( F o. G ) ` ( x ++ y ) ) = ( ( ( F o. G ) ` x ) ++ ( ( F o. G ) ` y ) ) ) |
63 |
1 2 21 20
|
elmrsubrn |
|- ( T e. _V -> ( ( F o. G ) e. ran S <-> ( ( F o. G ) : ( mREx ` T ) --> ( mREx ` T ) /\ A. c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ( ( F o. G ) ` <" c "> ) = <" c "> /\ A. x e. ( mREx ` T ) A. y e. ( mREx ` T ) ( ( F o. G ) ` ( x ++ y ) ) = ( ( ( F o. G ) ` x ) ++ ( ( F o. G ) ` y ) ) ) ) ) |
64 |
18 63
|
syl |
|- ( ( F e. ran S /\ G e. ran S ) -> ( ( F o. G ) e. ran S <-> ( ( F o. G ) : ( mREx ` T ) --> ( mREx ` T ) /\ A. c e. ( ( mCN ` T ) \ ( mVR ` T ) ) ( ( F o. G ) ` <" c "> ) = <" c "> /\ A. x e. ( mREx ` T ) A. y e. ( mREx ` T ) ( ( F o. G ) ` ( x ++ y ) ) = ( ( ( F o. G ) ` x ) ++ ( ( F o. G ) ` y ) ) ) ) ) |
65 |
8 33 62 64
|
mpbir3and |
|- ( ( F e. ran S /\ G e. ran S ) -> ( F o. G ) e. ran S ) |