Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubco.s |
|- S = ( mRSubst ` T ) |
2 |
|
mrsubvrs.v |
|- V = ( mVR ` T ) |
3 |
|
mrsubvrs.r |
|- R = ( mREx ` T ) |
4 |
|
n0i |
|- ( F e. ran S -> -. ran S = (/) ) |
5 |
1
|
rnfvprc |
|- ( -. T e. _V -> ran S = (/) ) |
6 |
4 5
|
nsyl2 |
|- ( F e. ran S -> T e. _V ) |
7 |
|
eqid |
|- ( mCN ` T ) = ( mCN ` T ) |
8 |
7 2 3
|
mrexval |
|- ( T e. _V -> R = Word ( ( mCN ` T ) u. V ) ) |
9 |
6 8
|
syl |
|- ( F e. ran S -> R = Word ( ( mCN ` T ) u. V ) ) |
10 |
9
|
eleq2d |
|- ( F e. ran S -> ( X e. R <-> X e. Word ( ( mCN ` T ) u. V ) ) ) |
11 |
|
fveq2 |
|- ( v = (/) -> ( F ` v ) = ( F ` (/) ) ) |
12 |
11
|
rneqd |
|- ( v = (/) -> ran ( F ` v ) = ran ( F ` (/) ) ) |
13 |
12
|
ineq1d |
|- ( v = (/) -> ( ran ( F ` v ) i^i V ) = ( ran ( F ` (/) ) i^i V ) ) |
14 |
|
rneq |
|- ( v = (/) -> ran v = ran (/) ) |
15 |
|
rn0 |
|- ran (/) = (/) |
16 |
14 15
|
eqtrdi |
|- ( v = (/) -> ran v = (/) ) |
17 |
16
|
ineq1d |
|- ( v = (/) -> ( ran v i^i V ) = ( (/) i^i V ) ) |
18 |
|
0in |
|- ( (/) i^i V ) = (/) |
19 |
17 18
|
eqtrdi |
|- ( v = (/) -> ( ran v i^i V ) = (/) ) |
20 |
19
|
iuneq1d |
|- ( v = (/) -> U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) = U_ x e. (/) ( ran ( F ` <" x "> ) i^i V ) ) |
21 |
|
0iun |
|- U_ x e. (/) ( ran ( F ` <" x "> ) i^i V ) = (/) |
22 |
20 21
|
eqtrdi |
|- ( v = (/) -> U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) = (/) ) |
23 |
13 22
|
eqeq12d |
|- ( v = (/) -> ( ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) <-> ( ran ( F ` (/) ) i^i V ) = (/) ) ) |
24 |
23
|
imbi2d |
|- ( v = (/) -> ( ( F e. ran S -> ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) <-> ( F e. ran S -> ( ran ( F ` (/) ) i^i V ) = (/) ) ) ) |
25 |
|
fveq2 |
|- ( v = y -> ( F ` v ) = ( F ` y ) ) |
26 |
25
|
rneqd |
|- ( v = y -> ran ( F ` v ) = ran ( F ` y ) ) |
27 |
26
|
ineq1d |
|- ( v = y -> ( ran ( F ` v ) i^i V ) = ( ran ( F ` y ) i^i V ) ) |
28 |
|
rneq |
|- ( v = y -> ran v = ran y ) |
29 |
28
|
ineq1d |
|- ( v = y -> ( ran v i^i V ) = ( ran y i^i V ) ) |
30 |
29
|
iuneq1d |
|- ( v = y -> U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) = U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) |
31 |
27 30
|
eqeq12d |
|- ( v = y -> ( ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) <-> ( ran ( F ` y ) i^i V ) = U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
32 |
31
|
imbi2d |
|- ( v = y -> ( ( F e. ran S -> ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) <-> ( F e. ran S -> ( ran ( F ` y ) i^i V ) = U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) ) |
33 |
|
fveq2 |
|- ( v = ( y ++ <" z "> ) -> ( F ` v ) = ( F ` ( y ++ <" z "> ) ) ) |
34 |
33
|
rneqd |
|- ( v = ( y ++ <" z "> ) -> ran ( F ` v ) = ran ( F ` ( y ++ <" z "> ) ) ) |
35 |
34
|
ineq1d |
|- ( v = ( y ++ <" z "> ) -> ( ran ( F ` v ) i^i V ) = ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) ) |
36 |
|
rneq |
|- ( v = ( y ++ <" z "> ) -> ran v = ran ( y ++ <" z "> ) ) |
37 |
36
|
ineq1d |
|- ( v = ( y ++ <" z "> ) -> ( ran v i^i V ) = ( ran ( y ++ <" z "> ) i^i V ) ) |
38 |
37
|
iuneq1d |
|- ( v = ( y ++ <" z "> ) -> U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) = U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) |
39 |
35 38
|
eqeq12d |
|- ( v = ( y ++ <" z "> ) -> ( ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) <-> ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
40 |
39
|
imbi2d |
|- ( v = ( y ++ <" z "> ) -> ( ( F e. ran S -> ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) <-> ( F e. ran S -> ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) ) |
41 |
|
fveq2 |
|- ( v = X -> ( F ` v ) = ( F ` X ) ) |
42 |
41
|
rneqd |
|- ( v = X -> ran ( F ` v ) = ran ( F ` X ) ) |
43 |
42
|
ineq1d |
|- ( v = X -> ( ran ( F ` v ) i^i V ) = ( ran ( F ` X ) i^i V ) ) |
44 |
|
rneq |
|- ( v = X -> ran v = ran X ) |
45 |
44
|
ineq1d |
|- ( v = X -> ( ran v i^i V ) = ( ran X i^i V ) ) |
46 |
45
|
iuneq1d |
|- ( v = X -> U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) = U_ x e. ( ran X i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) |
47 |
43 46
|
eqeq12d |
|- ( v = X -> ( ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) <-> ( ran ( F ` X ) i^i V ) = U_ x e. ( ran X i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
48 |
47
|
imbi2d |
|- ( v = X -> ( ( F e. ran S -> ( ran ( F ` v ) i^i V ) = U_ x e. ( ran v i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) <-> ( F e. ran S -> ( ran ( F ` X ) i^i V ) = U_ x e. ( ran X i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) ) |
49 |
1
|
mrsub0 |
|- ( F e. ran S -> ( F ` (/) ) = (/) ) |
50 |
49
|
rneqd |
|- ( F e. ran S -> ran ( F ` (/) ) = ran (/) ) |
51 |
50 15
|
eqtrdi |
|- ( F e. ran S -> ran ( F ` (/) ) = (/) ) |
52 |
51
|
ineq1d |
|- ( F e. ran S -> ( ran ( F ` (/) ) i^i V ) = ( (/) i^i V ) ) |
53 |
52 18
|
eqtrdi |
|- ( F e. ran S -> ( ran ( F ` (/) ) i^i V ) = (/) ) |
54 |
|
uneq1 |
|- ( ( ran ( F ` y ) i^i V ) = U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) -> ( ( ran ( F ` y ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) = ( U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) ) |
55 |
|
simpl |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> F e. ran S ) |
56 |
|
simprl |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> y e. Word ( ( mCN ` T ) u. V ) ) |
57 |
9
|
adantr |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> R = Word ( ( mCN ` T ) u. V ) ) |
58 |
56 57
|
eleqtrrd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> y e. R ) |
59 |
|
simprr |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> z e. ( ( mCN ` T ) u. V ) ) |
60 |
59
|
s1cld |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> <" z "> e. Word ( ( mCN ` T ) u. V ) ) |
61 |
60 57
|
eleqtrrd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> <" z "> e. R ) |
62 |
1 3
|
mrsubccat |
|- ( ( F e. ran S /\ y e. R /\ <" z "> e. R ) -> ( F ` ( y ++ <" z "> ) ) = ( ( F ` y ) ++ ( F ` <" z "> ) ) ) |
63 |
55 58 61 62
|
syl3anc |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( F ` ( y ++ <" z "> ) ) = ( ( F ` y ) ++ ( F ` <" z "> ) ) ) |
64 |
63
|
rneqd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ran ( F ` ( y ++ <" z "> ) ) = ran ( ( F ` y ) ++ ( F ` <" z "> ) ) ) |
65 |
1 3
|
mrsubf |
|- ( F e. ran S -> F : R --> R ) |
66 |
65
|
adantr |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> F : R --> R ) |
67 |
66 58
|
ffvelrnd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( F ` y ) e. R ) |
68 |
67 57
|
eleqtrd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( F ` y ) e. Word ( ( mCN ` T ) u. V ) ) |
69 |
66 61
|
ffvelrnd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( F ` <" z "> ) e. R ) |
70 |
69 57
|
eleqtrd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( F ` <" z "> ) e. Word ( ( mCN ` T ) u. V ) ) |
71 |
|
ccatrn |
|- ( ( ( F ` y ) e. Word ( ( mCN ` T ) u. V ) /\ ( F ` <" z "> ) e. Word ( ( mCN ` T ) u. V ) ) -> ran ( ( F ` y ) ++ ( F ` <" z "> ) ) = ( ran ( F ` y ) u. ran ( F ` <" z "> ) ) ) |
72 |
68 70 71
|
syl2anc |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ran ( ( F ` y ) ++ ( F ` <" z "> ) ) = ( ran ( F ` y ) u. ran ( F ` <" z "> ) ) ) |
73 |
64 72
|
eqtrd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ran ( F ` ( y ++ <" z "> ) ) = ( ran ( F ` y ) u. ran ( F ` <" z "> ) ) ) |
74 |
73
|
ineq1d |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = ( ( ran ( F ` y ) u. ran ( F ` <" z "> ) ) i^i V ) ) |
75 |
|
indir |
|- ( ( ran ( F ` y ) u. ran ( F ` <" z "> ) ) i^i V ) = ( ( ran ( F ` y ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) |
76 |
74 75
|
eqtrdi |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = ( ( ran ( F ` y ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) ) |
77 |
|
ccatrn |
|- ( ( y e. Word ( ( mCN ` T ) u. V ) /\ <" z "> e. Word ( ( mCN ` T ) u. V ) ) -> ran ( y ++ <" z "> ) = ( ran y u. ran <" z "> ) ) |
78 |
56 60 77
|
syl2anc |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ran ( y ++ <" z "> ) = ( ran y u. ran <" z "> ) ) |
79 |
|
s1rn |
|- ( z e. ( ( mCN ` T ) u. V ) -> ran <" z "> = { z } ) |
80 |
79
|
ad2antll |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ran <" z "> = { z } ) |
81 |
80
|
uneq2d |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( ran y u. ran <" z "> ) = ( ran y u. { z } ) ) |
82 |
78 81
|
eqtrd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ran ( y ++ <" z "> ) = ( ran y u. { z } ) ) |
83 |
82
|
ineq1d |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( ran ( y ++ <" z "> ) i^i V ) = ( ( ran y u. { z } ) i^i V ) ) |
84 |
|
indir |
|- ( ( ran y u. { z } ) i^i V ) = ( ( ran y i^i V ) u. ( { z } i^i V ) ) |
85 |
83 84
|
eqtrdi |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( ran ( y ++ <" z "> ) i^i V ) = ( ( ran y i^i V ) u. ( { z } i^i V ) ) ) |
86 |
85
|
iuneq1d |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) = U_ x e. ( ( ran y i^i V ) u. ( { z } i^i V ) ) ( ran ( F ` <" x "> ) i^i V ) ) |
87 |
|
iunxun |
|- U_ x e. ( ( ran y i^i V ) u. ( { z } i^i V ) ) ( ran ( F ` <" x "> ) i^i V ) = ( U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) u. U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) |
88 |
86 87
|
eqtrdi |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) = ( U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) u. U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
89 |
|
simpr |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ z e. V ) -> z e. V ) |
90 |
89
|
snssd |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ z e. V ) -> { z } C_ V ) |
91 |
|
df-ss |
|- ( { z } C_ V <-> ( { z } i^i V ) = { z } ) |
92 |
90 91
|
sylib |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ z e. V ) -> ( { z } i^i V ) = { z } ) |
93 |
92
|
iuneq1d |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ z e. V ) -> U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) = U_ x e. { z } ( ran ( F ` <" x "> ) i^i V ) ) |
94 |
|
vex |
|- z e. _V |
95 |
|
s1eq |
|- ( x = z -> <" x "> = <" z "> ) |
96 |
95
|
fveq2d |
|- ( x = z -> ( F ` <" x "> ) = ( F ` <" z "> ) ) |
97 |
96
|
rneqd |
|- ( x = z -> ran ( F ` <" x "> ) = ran ( F ` <" z "> ) ) |
98 |
97
|
ineq1d |
|- ( x = z -> ( ran ( F ` <" x "> ) i^i V ) = ( ran ( F ` <" z "> ) i^i V ) ) |
99 |
94 98
|
iunxsn |
|- U_ x e. { z } ( ran ( F ` <" x "> ) i^i V ) = ( ran ( F ` <" z "> ) i^i V ) |
100 |
93 99
|
eqtrdi |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ z e. V ) -> U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) = ( ran ( F ` <" z "> ) i^i V ) ) |
101 |
|
incom |
|- ( { z } i^i V ) = ( V i^i { z } ) |
102 |
|
simpr |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> -. z e. V ) |
103 |
|
disjsn |
|- ( ( V i^i { z } ) = (/) <-> -. z e. V ) |
104 |
102 103
|
sylibr |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ( V i^i { z } ) = (/) ) |
105 |
101 104
|
syl5eq |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ( { z } i^i V ) = (/) ) |
106 |
105
|
iuneq1d |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) = U_ x e. (/) ( ran ( F ` <" x "> ) i^i V ) ) |
107 |
55
|
adantr |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> F e. ran S ) |
108 |
|
eldif |
|- ( z e. ( ( ( mCN ` T ) u. V ) \ V ) <-> ( z e. ( ( mCN ` T ) u. V ) /\ -. z e. V ) ) |
109 |
108
|
biimpri |
|- ( ( z e. ( ( mCN ` T ) u. V ) /\ -. z e. V ) -> z e. ( ( ( mCN ` T ) u. V ) \ V ) ) |
110 |
59 109
|
sylan |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> z e. ( ( ( mCN ` T ) u. V ) \ V ) ) |
111 |
|
difun2 |
|- ( ( ( mCN ` T ) u. V ) \ V ) = ( ( mCN ` T ) \ V ) |
112 |
110 111
|
eleqtrdi |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> z e. ( ( mCN ` T ) \ V ) ) |
113 |
1 3 2 7
|
mrsubcn |
|- ( ( F e. ran S /\ z e. ( ( mCN ` T ) \ V ) ) -> ( F ` <" z "> ) = <" z "> ) |
114 |
107 112 113
|
syl2anc |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ( F ` <" z "> ) = <" z "> ) |
115 |
114
|
rneqd |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ran ( F ` <" z "> ) = ran <" z "> ) |
116 |
80
|
adantr |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ran <" z "> = { z } ) |
117 |
115 116
|
eqtrd |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ran ( F ` <" z "> ) = { z } ) |
118 |
117
|
ineq1d |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ( ran ( F ` <" z "> ) i^i V ) = ( { z } i^i V ) ) |
119 |
118 105
|
eqtrd |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> ( ran ( F ` <" z "> ) i^i V ) = (/) ) |
120 |
21 106 119
|
3eqtr4a |
|- ( ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) /\ -. z e. V ) -> U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) = ( ran ( F ` <" z "> ) i^i V ) ) |
121 |
100 120
|
pm2.61dan |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) = ( ran ( F ` <" z "> ) i^i V ) ) |
122 |
121
|
uneq2d |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) u. U_ x e. ( { z } i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) = ( U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) ) |
123 |
88 122
|
eqtrd |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) = ( U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) ) |
124 |
76 123
|
eqeq12d |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) <-> ( ( ran ( F ` y ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) = ( U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) u. ( ran ( F ` <" z "> ) i^i V ) ) ) ) |
125 |
54 124
|
syl5ibr |
|- ( ( F e. ran S /\ ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) ) -> ( ( ran ( F ` y ) i^i V ) = U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) -> ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
126 |
125
|
expcom |
|- ( ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) -> ( F e. ran S -> ( ( ran ( F ` y ) i^i V ) = U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) -> ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) ) |
127 |
126
|
a2d |
|- ( ( y e. Word ( ( mCN ` T ) u. V ) /\ z e. ( ( mCN ` T ) u. V ) ) -> ( ( F e. ran S -> ( ran ( F ` y ) i^i V ) = U_ x e. ( ran y i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) -> ( F e. ran S -> ( ran ( F ` ( y ++ <" z "> ) ) i^i V ) = U_ x e. ( ran ( y ++ <" z "> ) i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) ) |
128 |
24 32 40 48 53 127
|
wrdind |
|- ( X e. Word ( ( mCN ` T ) u. V ) -> ( F e. ran S -> ( ran ( F ` X ) i^i V ) = U_ x e. ( ran X i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
129 |
128
|
com12 |
|- ( F e. ran S -> ( X e. Word ( ( mCN ` T ) u. V ) -> ( ran ( F ` X ) i^i V ) = U_ x e. ( ran X i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
130 |
10 129
|
sylbid |
|- ( F e. ran S -> ( X e. R -> ( ran ( F ` X ) i^i V ) = U_ x e. ( ran X i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) ) |
131 |
130
|
imp |
|- ( ( F e. ran S /\ X e. R ) -> ( ran ( F ` X ) i^i V ) = U_ x e. ( ran X i^i V ) ( ran ( F ` <" x "> ) i^i V ) ) |