| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubco.s |
|
| 2 |
|
mrsubvrs.v |
|
| 3 |
|
mrsubvrs.r |
|
| 4 |
|
n0i |
|
| 5 |
1
|
rnfvprc |
|
| 6 |
4 5
|
nsyl2 |
|
| 7 |
|
eqid |
|
| 8 |
7 2 3
|
mrexval |
|
| 9 |
6 8
|
syl |
|
| 10 |
9
|
eleq2d |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
rneqd |
|
| 13 |
12
|
ineq1d |
|
| 14 |
|
rneq |
|
| 15 |
|
rn0 |
|
| 16 |
14 15
|
eqtrdi |
|
| 17 |
16
|
ineq1d |
|
| 18 |
|
0in |
|
| 19 |
17 18
|
eqtrdi |
|
| 20 |
19
|
iuneq1d |
|
| 21 |
|
0iun |
|
| 22 |
20 21
|
eqtrdi |
|
| 23 |
13 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
rneqd |
|
| 27 |
26
|
ineq1d |
|
| 28 |
|
rneq |
|
| 29 |
28
|
ineq1d |
|
| 30 |
29
|
iuneq1d |
|
| 31 |
27 30
|
eqeq12d |
|
| 32 |
31
|
imbi2d |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
rneqd |
|
| 35 |
34
|
ineq1d |
|
| 36 |
|
rneq |
|
| 37 |
36
|
ineq1d |
|
| 38 |
37
|
iuneq1d |
|
| 39 |
35 38
|
eqeq12d |
|
| 40 |
39
|
imbi2d |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
rneqd |
|
| 43 |
42
|
ineq1d |
|
| 44 |
|
rneq |
|
| 45 |
44
|
ineq1d |
|
| 46 |
45
|
iuneq1d |
|
| 47 |
43 46
|
eqeq12d |
|
| 48 |
47
|
imbi2d |
|
| 49 |
1
|
mrsub0 |
|
| 50 |
49
|
rneqd |
|
| 51 |
50 15
|
eqtrdi |
|
| 52 |
51
|
ineq1d |
|
| 53 |
52 18
|
eqtrdi |
|
| 54 |
|
uneq1 |
|
| 55 |
|
simpl |
|
| 56 |
|
simprl |
|
| 57 |
9
|
adantr |
|
| 58 |
56 57
|
eleqtrrd |
|
| 59 |
|
simprr |
|
| 60 |
59
|
s1cld |
|
| 61 |
60 57
|
eleqtrrd |
|
| 62 |
1 3
|
mrsubccat |
|
| 63 |
55 58 61 62
|
syl3anc |
|
| 64 |
63
|
rneqd |
|
| 65 |
1 3
|
mrsubf |
|
| 66 |
65
|
adantr |
|
| 67 |
66 58
|
ffvelcdmd |
|
| 68 |
67 57
|
eleqtrd |
|
| 69 |
66 61
|
ffvelcdmd |
|
| 70 |
69 57
|
eleqtrd |
|
| 71 |
|
ccatrn |
|
| 72 |
68 70 71
|
syl2anc |
|
| 73 |
64 72
|
eqtrd |
|
| 74 |
73
|
ineq1d |
|
| 75 |
|
indir |
|
| 76 |
74 75
|
eqtrdi |
|
| 77 |
|
ccatrn |
|
| 78 |
56 60 77
|
syl2anc |
|
| 79 |
|
s1rn |
|
| 80 |
79
|
ad2antll |
|
| 81 |
80
|
uneq2d |
|
| 82 |
78 81
|
eqtrd |
|
| 83 |
82
|
ineq1d |
|
| 84 |
|
indir |
|
| 85 |
83 84
|
eqtrdi |
|
| 86 |
85
|
iuneq1d |
|
| 87 |
|
iunxun |
|
| 88 |
86 87
|
eqtrdi |
|
| 89 |
|
simpr |
|
| 90 |
89
|
snssd |
|
| 91 |
|
dfss2 |
|
| 92 |
90 91
|
sylib |
|
| 93 |
92
|
iuneq1d |
|
| 94 |
|
vex |
|
| 95 |
|
s1eq |
|
| 96 |
95
|
fveq2d |
|
| 97 |
96
|
rneqd |
|
| 98 |
97
|
ineq1d |
|
| 99 |
94 98
|
iunxsn |
|
| 100 |
93 99
|
eqtrdi |
|
| 101 |
|
incom |
|
| 102 |
|
simpr |
|
| 103 |
|
disjsn |
|
| 104 |
102 103
|
sylibr |
|
| 105 |
101 104
|
eqtrid |
|
| 106 |
105
|
iuneq1d |
|
| 107 |
55
|
adantr |
|
| 108 |
|
eldif |
|
| 109 |
108
|
biimpri |
|
| 110 |
59 109
|
sylan |
|
| 111 |
|
difun2 |
|
| 112 |
110 111
|
eleqtrdi |
|
| 113 |
1 3 2 7
|
mrsubcn |
|
| 114 |
107 112 113
|
syl2anc |
|
| 115 |
114
|
rneqd |
|
| 116 |
80
|
adantr |
|
| 117 |
115 116
|
eqtrd |
|
| 118 |
117
|
ineq1d |
|
| 119 |
118 105
|
eqtrd |
|
| 120 |
21 106 119
|
3eqtr4a |
|
| 121 |
100 120
|
pm2.61dan |
|
| 122 |
121
|
uneq2d |
|
| 123 |
88 122
|
eqtrd |
|
| 124 |
76 123
|
eqeq12d |
|
| 125 |
54 124
|
imbitrrid |
|
| 126 |
125
|
expcom |
|
| 127 |
126
|
a2d |
|
| 128 |
24 32 40 48 53 127
|
wrdind |
|
| 129 |
128
|
com12 |
|
| 130 |
10 129
|
sylbid |
|
| 131 |
130
|
imp |
|