| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubccat.s |
|
| 2 |
|
n0i |
|
| 3 |
1
|
rnfvprc |
|
| 4 |
2 3
|
nsyl2 |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6 1
|
mrsubff |
|
| 8 |
|
ffun |
|
| 9 |
4 7 8
|
3syl |
|
| 10 |
5 6 1
|
mrsubrn |
|
| 11 |
10
|
eleq2i |
|
| 12 |
11
|
biimpi |
|
| 13 |
|
fvelima |
|
| 14 |
9 12 13
|
syl2anc |
|
| 15 |
|
elmapi |
|
| 16 |
15
|
adantl |
|
| 17 |
|
ssidd |
|
| 18 |
|
wrd0 |
|
| 19 |
|
eqid |
|
| 20 |
19 5 6
|
mrexval |
|
| 21 |
20
|
adantr |
|
| 22 |
18 21
|
eleqtrrid |
|
| 23 |
|
eqid |
|
| 24 |
19 5 6 1 23
|
mrsubval |
|
| 25 |
16 17 22 24
|
syl3anc |
|
| 26 |
|
co02 |
|
| 27 |
26
|
oveq2i |
|
| 28 |
23
|
frmd0 |
|
| 29 |
28
|
gsum0 |
|
| 30 |
27 29
|
eqtri |
|
| 31 |
25 30
|
eqtrdi |
|
| 32 |
|
fveq1 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
31 33
|
syl5ibcom |
|
| 35 |
34
|
rexlimdva |
|
| 36 |
4 14 35
|
sylc |
|