Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubccat.s |
⊢ 𝑆 = ( mRSubst ‘ 𝑇 ) |
2 |
|
n0i |
⊢ ( 𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅ ) |
3 |
1
|
rnfvprc |
⊢ ( ¬ 𝑇 ∈ V → ran 𝑆 = ∅ ) |
4 |
2 3
|
nsyl2 |
⊢ ( 𝐹 ∈ ran 𝑆 → 𝑇 ∈ V ) |
5 |
|
eqid |
⊢ ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 ) |
6 |
|
eqid |
⊢ ( mREx ‘ 𝑇 ) = ( mREx ‘ 𝑇 ) |
7 |
5 6 1
|
mrsubff |
⊢ ( 𝑇 ∈ V → 𝑆 : ( ( mREx ‘ 𝑇 ) ↑pm ( mVR ‘ 𝑇 ) ) ⟶ ( ( mREx ‘ 𝑇 ) ↑m ( mREx ‘ 𝑇 ) ) ) |
8 |
|
ffun |
⊢ ( 𝑆 : ( ( mREx ‘ 𝑇 ) ↑pm ( mVR ‘ 𝑇 ) ) ⟶ ( ( mREx ‘ 𝑇 ) ↑m ( mREx ‘ 𝑇 ) ) → Fun 𝑆 ) |
9 |
4 7 8
|
3syl |
⊢ ( 𝐹 ∈ ran 𝑆 → Fun 𝑆 ) |
10 |
5 6 1
|
mrsubrn |
⊢ ran 𝑆 = ( 𝑆 “ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) |
11 |
10
|
eleq2i |
⊢ ( 𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ ( 𝑆 “ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) ) |
12 |
11
|
biimpi |
⊢ ( 𝐹 ∈ ran 𝑆 → 𝐹 ∈ ( 𝑆 “ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) ) |
13 |
|
fvelima |
⊢ ( ( Fun 𝑆 ∧ 𝐹 ∈ ( 𝑆 “ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) ) → ∃ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ( 𝑆 ‘ 𝑓 ) = 𝐹 ) |
14 |
9 12 13
|
syl2anc |
⊢ ( 𝐹 ∈ ran 𝑆 → ∃ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ( 𝑆 ‘ 𝑓 ) = 𝐹 ) |
15 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) → 𝑓 : ( mVR ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) → 𝑓 : ( mVR ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ) |
17 |
|
ssidd |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) → ( mVR ‘ 𝑇 ) ⊆ ( mVR ‘ 𝑇 ) ) |
18 |
|
wrd0 |
⊢ ∅ ∈ Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) |
19 |
|
eqid |
⊢ ( mCN ‘ 𝑇 ) = ( mCN ‘ 𝑇 ) |
20 |
19 5 6
|
mrexval |
⊢ ( 𝑇 ∈ V → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) → ( mREx ‘ 𝑇 ) = Word ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
22 |
18 21
|
eleqtrrid |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) → ∅ ∈ ( mREx ‘ 𝑇 ) ) |
23 |
|
eqid |
⊢ ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) = ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) |
24 |
19 5 6 1 23
|
mrsubval |
⊢ ( ( 𝑓 : ( mVR ‘ 𝑇 ) ⟶ ( mREx ‘ 𝑇 ) ∧ ( mVR ‘ 𝑇 ) ⊆ ( mVR ‘ 𝑇 ) ∧ ∅ ∈ ( mREx ‘ 𝑇 ) ) → ( ( 𝑆 ‘ 𝑓 ) ‘ ∅ ) = ( ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ↦ if ( 𝑣 ∈ ( mVR ‘ 𝑇 ) , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ ∅ ) ) ) |
25 |
16 17 22 24
|
syl3anc |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) → ( ( 𝑆 ‘ 𝑓 ) ‘ ∅ ) = ( ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ↦ if ( 𝑣 ∈ ( mVR ‘ 𝑇 ) , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ ∅ ) ) ) |
26 |
|
co02 |
⊢ ( ( 𝑣 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ↦ if ( 𝑣 ∈ ( mVR ‘ 𝑇 ) , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ ∅ ) = ∅ |
27 |
26
|
oveq2i |
⊢ ( ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ↦ if ( 𝑣 ∈ ( mVR ‘ 𝑇 ) , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ ∅ ) ) = ( ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) Σg ∅ ) |
28 |
23
|
frmd0 |
⊢ ∅ = ( 0g ‘ ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) ) |
29 |
28
|
gsum0 |
⊢ ( ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) Σg ∅ ) = ∅ |
30 |
27 29
|
eqtri |
⊢ ( ( freeMnd ‘ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑇 ) ∪ ( mVR ‘ 𝑇 ) ) ↦ if ( 𝑣 ∈ ( mVR ‘ 𝑇 ) , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ ∅ ) ) = ∅ |
31 |
25 30
|
eqtrdi |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) → ( ( 𝑆 ‘ 𝑓 ) ‘ ∅ ) = ∅ ) |
32 |
|
fveq1 |
⊢ ( ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( ( 𝑆 ‘ 𝑓 ) ‘ ∅ ) = ( 𝐹 ‘ ∅ ) ) |
33 |
32
|
eqeq1d |
⊢ ( ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( ( ( 𝑆 ‘ 𝑓 ) ‘ ∅ ) = ∅ ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) |
34 |
31 33
|
syl5ibcom |
⊢ ( ( 𝑇 ∈ V ∧ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ) → ( ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( 𝐹 ‘ ∅ ) = ∅ ) ) |
35 |
34
|
rexlimdva |
⊢ ( 𝑇 ∈ V → ( ∃ 𝑓 ∈ ( ( mREx ‘ 𝑇 ) ↑m ( mVR ‘ 𝑇 ) ) ( 𝑆 ‘ 𝑓 ) = 𝐹 → ( 𝐹 ‘ ∅ ) = ∅ ) ) |
36 |
4 14 35
|
sylc |
⊢ ( 𝐹 ∈ ran 𝑆 → ( 𝐹 ‘ ∅ ) = ∅ ) |