Step |
Hyp |
Ref |
Expression |
1 |
|
mrsubco.s |
|
2 |
|
eqid |
|
3 |
1 2
|
mrsubf |
|
4 |
3
|
adantr |
|
5 |
1 2
|
mrsubf |
|
6 |
5
|
adantl |
|
7 |
|
fco |
|
8 |
4 6 7
|
syl2anc |
|
9 |
6
|
adantr |
|
10 |
|
eldifi |
|
11 |
|
elun1 |
|
12 |
10 11
|
syl |
|
13 |
12
|
adantl |
|
14 |
13
|
s1cld |
|
15 |
|
n0i |
|
16 |
1
|
rnfvprc |
|
17 |
15 16
|
nsyl2 |
|
18 |
17
|
adantr |
|
19 |
18
|
adantr |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
20 21 2
|
mrexval |
|
23 |
19 22
|
syl |
|
24 |
14 23
|
eleqtrrd |
|
25 |
|
fvco3 |
|
26 |
9 24 25
|
syl2anc |
|
27 |
1 2 21 20
|
mrsubcn |
|
28 |
27
|
adantll |
|
29 |
28
|
fveq2d |
|
30 |
1 2 21 20
|
mrsubcn |
|
31 |
30
|
adantlr |
|
32 |
26 29 31
|
3eqtrd |
|
33 |
32
|
ralrimiva |
|
34 |
1 2
|
mrsubccat |
|
35 |
34
|
3expb |
|
36 |
35
|
adantll |
|
37 |
36
|
fveq2d |
|
38 |
|
simpll |
|
39 |
6
|
adantr |
|
40 |
|
simprl |
|
41 |
39 40
|
ffvelrnd |
|
42 |
|
simprr |
|
43 |
39 42
|
ffvelrnd |
|
44 |
1 2
|
mrsubccat |
|
45 |
38 41 43 44
|
syl3anc |
|
46 |
37 45
|
eqtrd |
|
47 |
18 22
|
syl |
|
48 |
47
|
adantr |
|
49 |
40 48
|
eleqtrd |
|
50 |
42 48
|
eleqtrd |
|
51 |
|
ccatcl |
|
52 |
49 50 51
|
syl2anc |
|
53 |
52 48
|
eleqtrrd |
|
54 |
|
fvco3 |
|
55 |
39 53 54
|
syl2anc |
|
56 |
|
fvco3 |
|
57 |
39 40 56
|
syl2anc |
|
58 |
|
fvco3 |
|
59 |
39 42 58
|
syl2anc |
|
60 |
57 59
|
oveq12d |
|
61 |
46 55 60
|
3eqtr4d |
|
62 |
61
|
ralrimivva |
|
63 |
1 2 21 20
|
elmrsubrn |
|
64 |
18 63
|
syl |
|
65 |
8 33 62 64
|
mpbir3and |
|