| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubco.s |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
mrsubf |
|
| 4 |
3
|
adantr |
|
| 5 |
1 2
|
mrsubf |
|
| 6 |
5
|
adantl |
|
| 7 |
|
fco |
|
| 8 |
4 6 7
|
syl2anc |
|
| 9 |
6
|
adantr |
|
| 10 |
|
eldifi |
|
| 11 |
|
elun1 |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
s1cld |
|
| 15 |
|
n0i |
|
| 16 |
1
|
rnfvprc |
|
| 17 |
15 16
|
nsyl2 |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
adantr |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
20 21 2
|
mrexval |
|
| 23 |
19 22
|
syl |
|
| 24 |
14 23
|
eleqtrrd |
|
| 25 |
|
fvco3 |
|
| 26 |
9 24 25
|
syl2anc |
|
| 27 |
1 2 21 20
|
mrsubcn |
|
| 28 |
27
|
adantll |
|
| 29 |
28
|
fveq2d |
|
| 30 |
1 2 21 20
|
mrsubcn |
|
| 31 |
30
|
adantlr |
|
| 32 |
26 29 31
|
3eqtrd |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
1 2
|
mrsubccat |
|
| 35 |
34
|
3expb |
|
| 36 |
35
|
adantll |
|
| 37 |
36
|
fveq2d |
|
| 38 |
|
simpll |
|
| 39 |
6
|
adantr |
|
| 40 |
|
simprl |
|
| 41 |
39 40
|
ffvelcdmd |
|
| 42 |
|
simprr |
|
| 43 |
39 42
|
ffvelcdmd |
|
| 44 |
1 2
|
mrsubccat |
|
| 45 |
38 41 43 44
|
syl3anc |
|
| 46 |
37 45
|
eqtrd |
|
| 47 |
18 22
|
syl |
|
| 48 |
47
|
adantr |
|
| 49 |
40 48
|
eleqtrd |
|
| 50 |
42 48
|
eleqtrd |
|
| 51 |
|
ccatcl |
|
| 52 |
49 50 51
|
syl2anc |
|
| 53 |
52 48
|
eleqtrrd |
|
| 54 |
|
fvco3 |
|
| 55 |
39 53 54
|
syl2anc |
|
| 56 |
|
fvco3 |
|
| 57 |
39 40 56
|
syl2anc |
|
| 58 |
|
fvco3 |
|
| 59 |
39 42 58
|
syl2anc |
|
| 60 |
57 59
|
oveq12d |
|
| 61 |
46 55 60
|
3eqtr4d |
|
| 62 |
61
|
ralrimivva |
|
| 63 |
1 2 21 20
|
elmrsubrn |
|
| 64 |
18 63
|
syl |
|
| 65 |
8 33 62 64
|
mpbir3and |
|