| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrsubccat.s |
|
| 2 |
|
mrsubccat.r |
|
| 3 |
|
mrsubcn.v |
|
| 4 |
|
mrsubcn.c |
|
| 5 |
1 2
|
mrsubf |
|
| 6 |
1 2 3 4
|
mrsubcn |
|
| 7 |
6
|
ralrimiva |
|
| 8 |
1 2
|
mrsubccat |
|
| 9 |
8
|
3expb |
|
| 10 |
9
|
ralrimivva |
|
| 11 |
5 7 10
|
3jca |
|
| 12 |
4 3 2
|
mrexval |
|
| 13 |
12
|
adantr |
|
| 14 |
|
s1eq |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
eqid |
|
| 17 |
|
fvex |
|
| 18 |
15 16 17
|
fvmpt |
|
| 19 |
18
|
adantl |
|
| 20 |
|
difun2 |
|
| 21 |
20
|
eleq2i |
|
| 22 |
|
eldif |
|
| 23 |
21 22
|
bitr3i |
|
| 24 |
|
simpr2 |
|
| 25 |
|
s1eq |
|
| 26 |
25
|
fveq2d |
|
| 27 |
26 25
|
eqeq12d |
|
| 28 |
27
|
rspccva |
|
| 29 |
24 28
|
sylan |
|
| 30 |
23 29
|
sylan2br |
|
| 31 |
30
|
anassrs |
|
| 32 |
31
|
eqcomd |
|
| 33 |
19 32
|
ifeqda |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
34
|
coeq1d |
|
| 36 |
35
|
oveq2d |
|
| 37 |
13 36
|
mpteq12dv |
|
| 38 |
|
elun2 |
|
| 39 |
|
simplr1 |
|
| 40 |
|
simpr |
|
| 41 |
40
|
s1cld |
|
| 42 |
12
|
ad2antrr |
|
| 43 |
41 42
|
eleqtrrd |
|
| 44 |
39 43
|
ffvelcdmd |
|
| 45 |
38 44
|
sylan2 |
|
| 46 |
15
|
cbvmptv |
|
| 47 |
45 46
|
fmptd |
|
| 48 |
|
ssid |
|
| 49 |
|
eqid |
|
| 50 |
4 3 2 1 49
|
mrsubfval |
|
| 51 |
47 48 50
|
sylancl |
|
| 52 |
4
|
fvexi |
|
| 53 |
3
|
fvexi |
|
| 54 |
52 53
|
unex |
|
| 55 |
49
|
frmdmnd |
|
| 56 |
54 55
|
ax-mp |
|
| 57 |
56
|
a1i |
|
| 58 |
54
|
a1i |
|
| 59 |
44 42
|
eleqtrd |
|
| 60 |
59
|
fmpttd |
|
| 61 |
|
simpr1 |
|
| 62 |
13 13
|
feq23d |
|
| 63 |
61 62
|
mpbid |
|
| 64 |
|
simpr3 |
|
| 65 |
|
simprl |
|
| 66 |
12
|
adantr |
|
| 67 |
66
|
adantr |
|
| 68 |
65 67
|
eleqtrd |
|
| 69 |
|
simprr |
|
| 70 |
69 67
|
eleqtrd |
|
| 71 |
|
eqid |
|
| 72 |
49 71
|
frmdbas |
|
| 73 |
54 72
|
ax-mp |
|
| 74 |
73
|
eqcomi |
|
| 75 |
|
eqid |
|
| 76 |
49 74 75
|
frmdadd |
|
| 77 |
68 70 76
|
syl2anc |
|
| 78 |
77
|
fveq2d |
|
| 79 |
|
ffvelcdm |
|
| 80 |
79
|
ad2ant2lr |
|
| 81 |
80 67
|
eleqtrd |
|
| 82 |
|
ffvelcdm |
|
| 83 |
82
|
ad2ant2l |
|
| 84 |
83 67
|
eleqtrd |
|
| 85 |
49 74 75
|
frmdadd |
|
| 86 |
81 84 85
|
syl2anc |
|
| 87 |
78 86
|
eqeq12d |
|
| 88 |
87
|
2ralbidva |
|
| 89 |
66
|
raleqdv |
|
| 90 |
66 89
|
raleqbidv |
|
| 91 |
88 90
|
bitr3d |
|
| 92 |
91
|
3ad2antr1 |
|
| 93 |
64 92
|
mpbid |
|
| 94 |
|
wrd0 |
|
| 95 |
|
ffvelcdm |
|
| 96 |
63 94 95
|
sylancl |
|
| 97 |
|
lencl |
|
| 98 |
96 97
|
syl |
|
| 99 |
98
|
nn0cnd |
|
| 100 |
|
0cnd |
|
| 101 |
99
|
addridd |
|
| 102 |
94 13
|
eleqtrrid |
|
| 103 |
|
fvoveq1 |
|
| 104 |
|
fveq2 |
|
| 105 |
104
|
oveq1d |
|
| 106 |
103 105
|
eqeq12d |
|
| 107 |
|
oveq2 |
|
| 108 |
|
ccatidid |
|
| 109 |
107 108
|
eqtrdi |
|
| 110 |
109
|
fveq2d |
|
| 111 |
|
fveq2 |
|
| 112 |
111
|
oveq2d |
|
| 113 |
110 112
|
eqeq12d |
|
| 114 |
106 113
|
rspc2va |
|
| 115 |
102 102 64 114
|
syl21anc |
|
| 116 |
115
|
fveq2d |
|
| 117 |
|
ccatlen |
|
| 118 |
96 96 117
|
syl2anc |
|
| 119 |
101 116 118
|
3eqtrrd |
|
| 120 |
99 99 100 119
|
addcanad |
|
| 121 |
|
fvex |
|
| 122 |
|
hasheq0 |
|
| 123 |
121 122
|
ax-mp |
|
| 124 |
120 123
|
sylib |
|
| 125 |
56 56
|
pm3.2i |
|
| 126 |
49
|
frmd0 |
|
| 127 |
74 74 75 75 126 126
|
ismhm |
|
| 128 |
125 127
|
mpbiran |
|
| 129 |
63 93 124 128
|
syl3anbrc |
|
| 130 |
|
eqid |
|
| 131 |
130
|
vrmdf |
|
| 132 |
54 131
|
ax-mp |
|
| 133 |
|
fcompt |
|
| 134 |
63 132 133
|
sylancl |
|
| 135 |
130
|
vrmdval |
|
| 136 |
54 135
|
mpan |
|
| 137 |
136
|
fveq2d |
|
| 138 |
137
|
mpteq2ia |
|
| 139 |
134 138
|
eqtrdi |
|
| 140 |
49 74 130
|
frmdup3lem |
|
| 141 |
57 58 60 129 139 140
|
syl32anc |
|
| 142 |
37 51 141
|
3eqtr4rd |
|
| 143 |
3 2 1
|
mrsubff |
|
| 144 |
143
|
ffnd |
|
| 145 |
144
|
adantr |
|
| 146 |
2
|
fvexi |
|
| 147 |
|
elpm2r |
|
| 148 |
146 53 147
|
mpanl12 |
|
| 149 |
47 48 148
|
sylancl |
|
| 150 |
|
fnfvelrn |
|
| 151 |
145 149 150
|
syl2anc |
|
| 152 |
142 151
|
eqeltrd |
|
| 153 |
152
|
ex |
|
| 154 |
11 153
|
impbid2 |
|