Metamath Proof Explorer


Theorem wrdco

Description: Mapping a word by a function. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion wrdco WWordAF:ABFWWordB

Proof

Step Hyp Ref Expression
1 simpr WWordAF:ABF:AB
2 wrdf WWordAW:0..^WA
3 2 adantr WWordAF:ABW:0..^WA
4 fco F:ABW:0..^WAFW:0..^WB
5 1 3 4 syl2anc WWordAF:ABFW:0..^WB
6 iswrdi FW:0..^WBFWWordB
7 5 6 syl WWordAF:ABFWWordB