| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝐴  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | 
						
							| 4 |  | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 )  →  ( 𝐹  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | 
						
							| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | 
						
							| 6 |  | iswrdi | ⊢ ( ( 𝐹  ∘  𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵  →  ( 𝐹  ∘  𝑊 )  ∈  Word  𝐵 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝑊 )  ∈  Word  𝐵 ) |