Metamath Proof Explorer


Theorem mpstrcl

Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypothesis mpstssv.p
|- P = ( mPreSt ` T )
Assertion mpstrcl
|- ( <. D , H , A >. e. P -> ( D e. _V /\ H e. _V /\ A e. _V ) )

Proof

Step Hyp Ref Expression
1 mpstssv.p
 |-  P = ( mPreSt ` T )
2 df-ot
 |-  <. D , H , A >. = <. <. D , H >. , A >.
3 1 mpstssv
 |-  P C_ ( ( _V X. _V ) X. _V )
4 3 sseli
 |-  ( <. D , H , A >. e. P -> <. D , H , A >. e. ( ( _V X. _V ) X. _V ) )
5 2 4 eqeltrrid
 |-  ( <. D , H , A >. e. P -> <. <. D , H >. , A >. e. ( ( _V X. _V ) X. _V ) )
6 opelxp
 |-  ( <. D , H >. e. ( _V X. _V ) <-> ( D e. _V /\ H e. _V ) )
7 6 anbi1i
 |-  ( ( <. D , H >. e. ( _V X. _V ) /\ A e. _V ) <-> ( ( D e. _V /\ H e. _V ) /\ A e. _V ) )
8 opelxp
 |-  ( <. <. D , H >. , A >. e. ( ( _V X. _V ) X. _V ) <-> ( <. D , H >. e. ( _V X. _V ) /\ A e. _V ) )
9 df-3an
 |-  ( ( D e. _V /\ H e. _V /\ A e. _V ) <-> ( ( D e. _V /\ H e. _V ) /\ A e. _V ) )
10 7 8 9 3bitr4i
 |-  ( <. <. D , H >. , A >. e. ( ( _V X. _V ) X. _V ) <-> ( D e. _V /\ H e. _V /\ A e. _V ) )
11 5 10 sylib
 |-  ( <. D , H , A >. e. P -> ( D e. _V /\ H e. _V /\ A e. _V ) )