Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
mpstrcl
Next ⟩
msrf
Metamath Proof Explorer
Ascii
Unicode
Theorem
mpstrcl
Description:
The elements of a pre-statement are sets.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypothesis
mpstssv.p
⊢
P
=
mPreSt
⁡
T
Assertion
mpstrcl
⊢
D
H
A
∈
P
→
D
∈
V
∧
H
∈
V
∧
A
∈
V
Proof
Step
Hyp
Ref
Expression
1
mpstssv.p
⊢
P
=
mPreSt
⁡
T
2
df-ot
⊢
D
H
A
=
D
H
A
3
1
mpstssv
⊢
P
⊆
V
×
V
×
V
4
3
sseli
⊢
D
H
A
∈
P
→
D
H
A
∈
V
×
V
×
V
5
2
4
eqeltrrid
⊢
D
H
A
∈
P
→
D
H
A
∈
V
×
V
×
V
6
opelxp
⊢
D
H
∈
V
×
V
↔
D
∈
V
∧
H
∈
V
7
6
anbi1i
⊢
D
H
∈
V
×
V
∧
A
∈
V
↔
D
∈
V
∧
H
∈
V
∧
A
∈
V
8
opelxp
⊢
D
H
A
∈
V
×
V
×
V
↔
D
H
∈
V
×
V
∧
A
∈
V
9
df-3an
⊢
D
∈
V
∧
H
∈
V
∧
A
∈
V
↔
D
∈
V
∧
H
∈
V
∧
A
∈
V
10
7
8
9
3bitr4i
⊢
D
H
A
∈
V
×
V
×
V
↔
D
∈
V
∧
H
∈
V
∧
A
∈
V
11
5
10
sylib
⊢
D
H
A
∈
P
→
D
∈
V
∧
H
∈
V
∧
A
∈
V