Metamath Proof Explorer


Theorem mpstrcl

Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypothesis mpstssv.p P = mPreSt T
Assertion mpstrcl D H A P D V H V A V

Proof

Step Hyp Ref Expression
1 mpstssv.p P = mPreSt T
2 df-ot D H A = D H A
3 1 mpstssv P V × V × V
4 3 sseli D H A P D H A V × V × V
5 2 4 eqeltrrid D H A P D H A V × V × V
6 opelxp D H V × V D V H V
7 6 anbi1i D H V × V A V D V H V A V
8 opelxp D H A V × V × V D H V × V A V
9 df-3an D V H V A V D V H V A V
10 7 8 9 3bitr4i D H A V × V × V D V H V A V
11 5 10 sylib D H A P D V H V A V