Step |
Hyp |
Ref |
Expression |
1 |
|
mpstssv.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
2 |
|
df-ot |
⊢ ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ = ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ |
3 |
1
|
mpstssv |
⊢ 𝑃 ⊆ ( ( V × V ) × V ) |
4 |
3
|
sseli |
⊢ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ ( ( V × V ) × V ) ) |
5 |
2 4
|
eqeltrrid |
⊢ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) ) |
6 |
|
opelxp |
⊢ ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ↔ ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) ) |
7 |
6
|
anbi1i |
⊢ ( ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ∧ 𝐴 ∈ V ) ↔ ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) ∧ 𝐴 ∈ V ) ) |
8 |
|
opelxp |
⊢ ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) ↔ ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ∧ 𝐴 ∈ V ) ) |
9 |
|
df-3an |
⊢ ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) ↔ ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) ∧ 𝐴 ∈ V ) ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) ↔ ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) ) |
11 |
5 10
|
sylib |
⊢ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) ) |