Metamath Proof Explorer


Theorem mpstrcl

Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypothesis mpstssv.p 𝑃 = ( mPreSt ‘ 𝑇 )
Assertion mpstrcl ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) )

Proof

Step Hyp Ref Expression
1 mpstssv.p 𝑃 = ( mPreSt ‘ 𝑇 )
2 df-ot 𝐷 , 𝐻 , 𝐴 ⟩ = ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴
3 1 mpstssv 𝑃 ⊆ ( ( V × V ) × V )
4 3 sseli ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ ( ( V × V ) × V ) )
5 2 4 eqeltrrid ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) )
6 opelxp ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ↔ ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) )
7 6 anbi1i ( ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ∧ 𝐴 ∈ V ) ↔ ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) ∧ 𝐴 ∈ V ) )
8 opelxp ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) ↔ ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ∧ 𝐴 ∈ V ) )
9 df-3an ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) ↔ ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) ∧ 𝐴 ∈ V ) )
10 7 8 9 3bitr4i ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) ↔ ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) )
11 5 10 sylib ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) )