Metamath Proof Explorer


Theorem msrf

Description: The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mpstssv.p P = mPreSt T
msrf.r R = mStRed T
Assertion msrf R : P P

Proof

Step Hyp Ref Expression
1 mpstssv.p P = mPreSt T
2 msrf.r R = mStRed T
3 otex 1 st 1 st s mVars T h a / z z × z h a V
4 3 csbex 2 nd s / a 1 st 1 st s mVars T h a / z z × z h a V
5 4 csbex 2 nd 1 st s / h 2 nd s / a 1 st 1 st s mVars T h a / z z × z h a V
6 eqid mVars T = mVars T
7 6 1 2 msrfval R = s P 2 nd 1 st s / h 2 nd s / a 1 st 1 st s mVars T h a / z z × z h a
8 5 7 fnmpti R Fn P
9 1 mpst123 s P s = 1 st 1 st s 2 nd 1 st s 2 nd s
10 9 fveq2d s P R s = R 1 st 1 st s 2 nd 1 st s 2 nd s
11 id s P s P
12 9 11 eqeltrrd s P 1 st 1 st s 2 nd 1 st s 2 nd s P
13 eqid mVars T 2 nd 1 st s 2 nd s = mVars T 2 nd 1 st s 2 nd s
14 6 1 2 13 msrval 1 st 1 st s 2 nd 1 st s 2 nd s P R 1 st 1 st s 2 nd 1 st s 2 nd s = 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s 2 nd 1 st s 2 nd s
15 12 14 syl s P R 1 st 1 st s 2 nd 1 st s 2 nd s = 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s 2 nd 1 st s 2 nd s
16 10 15 eqtrd s P R s = 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s 2 nd 1 st s 2 nd s
17 inss1 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s 1 st 1 st s
18 eqid mDV T = mDV T
19 eqid mEx T = mEx T
20 18 19 1 elmpst 1 st 1 st s 2 nd 1 st s 2 nd s P 1 st 1 st s mDV T 1 st 1 st s -1 = 1 st 1 st s 2 nd 1 st s mEx T 2 nd 1 st s Fin 2 nd s mEx T
21 12 20 sylib s P 1 st 1 st s mDV T 1 st 1 st s -1 = 1 st 1 st s 2 nd 1 st s mEx T 2 nd 1 st s Fin 2 nd s mEx T
22 21 simp1d s P 1 st 1 st s mDV T 1 st 1 st s -1 = 1 st 1 st s
23 22 simpld s P 1 st 1 st s mDV T
24 17 23 sstrid s P 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s mDV T
25 cnvin 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1 = 1 st 1 st s -1 mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1
26 22 simprd s P 1 st 1 st s -1 = 1 st 1 st s
27 cnvxp mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1 = mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s
28 27 a1i s P mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1 = mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s
29 26 28 ineq12d s P 1 st 1 st s -1 mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1 = 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s
30 25 29 syl5eq s P 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1 = 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s
31 24 30 jca s P 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s mDV T 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1 = 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s
32 21 simp2d s P 2 nd 1 st s mEx T 2 nd 1 st s Fin
33 21 simp3d s P 2 nd s mEx T
34 18 19 1 elmpst 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s 2 nd 1 st s 2 nd s P 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s mDV T 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s -1 = 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s 2 nd 1 st s mEx T 2 nd 1 st s Fin 2 nd s mEx T
35 31 32 33 34 syl3anbrc s P 1 st 1 st s mVars T 2 nd 1 st s 2 nd s × mVars T 2 nd 1 st s 2 nd s 2 nd 1 st s 2 nd s P
36 16 35 eqeltrd s P R s P
37 36 rgen s P R s P
38 ffnfv R : P P R Fn P s P R s P
39 8 37 38 mpbir2an R : P P