Metamath Proof Explorer


Theorem elmsta

Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mstapst.p P = mPreSt T
mstapst.s S = mStat T
elmsta.v V = mVars T
elmsta.z Z = V H A
Assertion elmsta D H A S D H A P D Z × Z

Proof

Step Hyp Ref Expression
1 mstapst.p P = mPreSt T
2 mstapst.s S = mStat T
3 elmsta.v V = mVars T
4 elmsta.z Z = V H A
5 1 2 mstapst S P
6 5 sseli D H A S D H A P
7 eqid mStRed T = mStRed T
8 3 1 7 4 msrval D H A P mStRed T D H A = D Z × Z H A
9 6 8 syl D H A S mStRed T D H A = D Z × Z H A
10 7 2 msrid D H A S mStRed T D H A = D H A
11 9 10 eqtr3d D H A S D Z × Z H A = D H A
12 11 fveq2d D H A S 1 st D Z × Z H A = 1 st D H A
13 12 fveq2d D H A S 1 st 1 st D Z × Z H A = 1 st 1 st D H A
14 inss1 D Z × Z D
15 1 mpstrcl D H A P D V H V A V
16 6 15 syl D H A S D V H V A V
17 16 simp1d D H A S D V
18 ssexg D Z × Z D D V D Z × Z V
19 14 17 18 sylancr D H A S D Z × Z V
20 16 simp2d D H A S H V
21 16 simp3d D H A S A V
22 ot1stg D Z × Z V H V A V 1 st 1 st D Z × Z H A = D Z × Z
23 19 20 21 22 syl3anc D H A S 1 st 1 st D Z × Z H A = D Z × Z
24 ot1stg D V H V A V 1 st 1 st D H A = D
25 16 24 syl D H A S 1 st 1 st D H A = D
26 13 23 25 3eqtr3d D H A S D Z × Z = D
27 inss2 D Z × Z Z × Z
28 26 27 eqsstrrdi D H A S D Z × Z
29 6 28 jca D H A S D H A P D Z × Z
30 8 adantr D H A P D Z × Z mStRed T D H A = D Z × Z H A
31 simpr D H A P D Z × Z D Z × Z
32 df-ss D Z × Z D Z × Z = D
33 31 32 sylib D H A P D Z × Z D Z × Z = D
34 33 oteq1d D H A P D Z × Z D Z × Z H A = D H A
35 30 34 eqtrd D H A P D Z × Z mStRed T D H A = D H A
36 1 7 msrf mStRed T : P P
37 ffn mStRed T : P P mStRed T Fn P
38 36 37 ax-mp mStRed T Fn P
39 simpl D H A P D Z × Z D H A P
40 fnfvelrn mStRed T Fn P D H A P mStRed T D H A ran mStRed T
41 38 39 40 sylancr D H A P D Z × Z mStRed T D H A ran mStRed T
42 35 41 eqeltrrd D H A P D Z × Z D H A ran mStRed T
43 7 2 mstaval S = ran mStRed T
44 42 43 eleqtrrdi D H A P D Z × Z D H A S
45 29 44 impbii D H A S D H A P D Z × Z