| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mstapst.p |
|
| 2 |
|
mstapst.s |
|
| 3 |
|
elmsta.v |
|
| 4 |
|
elmsta.z |
|
| 5 |
1 2
|
mstapst |
|
| 6 |
5
|
sseli |
|
| 7 |
|
eqid |
|
| 8 |
3 1 7 4
|
msrval |
|
| 9 |
6 8
|
syl |
|
| 10 |
7 2
|
msrid |
|
| 11 |
9 10
|
eqtr3d |
|
| 12 |
11
|
fveq2d |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
inss1 |
|
| 15 |
1
|
mpstrcl |
|
| 16 |
6 15
|
syl |
|
| 17 |
16
|
simp1d |
|
| 18 |
|
ssexg |
|
| 19 |
14 17 18
|
sylancr |
|
| 20 |
16
|
simp2d |
|
| 21 |
16
|
simp3d |
|
| 22 |
|
ot1stg |
|
| 23 |
19 20 21 22
|
syl3anc |
|
| 24 |
|
ot1stg |
|
| 25 |
16 24
|
syl |
|
| 26 |
13 23 25
|
3eqtr3d |
|
| 27 |
|
inss2 |
|
| 28 |
26 27
|
eqsstrrdi |
|
| 29 |
6 28
|
jca |
|
| 30 |
8
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
|
dfss2 |
|
| 33 |
31 32
|
sylib |
|
| 34 |
33
|
oteq1d |
|
| 35 |
30 34
|
eqtrd |
|
| 36 |
1 7
|
msrf |
|
| 37 |
|
ffn |
|
| 38 |
36 37
|
ax-mp |
|
| 39 |
|
simpl |
|
| 40 |
|
fnfvelrn |
|
| 41 |
38 39 40
|
sylancr |
|
| 42 |
35 41
|
eqeltrrd |
|
| 43 |
7 2
|
mstaval |
|
| 44 |
42 43
|
eleqtrrdi |
|
| 45 |
29 44
|
impbii |
|