Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
mstapst
Next ⟩
elmsta
Metamath Proof Explorer
Ascii
Unicode
Theorem
mstapst
Description:
A statement is a pre-statement.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
mstapst.p
⊢
P
=
mPreSt
⁡
T
mstapst.s
⊢
S
=
mStat
⁡
T
Assertion
mstapst
⊢
S
⊆
P
Proof
Step
Hyp
Ref
Expression
1
mstapst.p
⊢
P
=
mPreSt
⁡
T
2
mstapst.s
⊢
S
=
mStat
⁡
T
3
eqid
⊢
mStRed
⁡
T
=
mStRed
⁡
T
4
3
2
mstaval
⊢
S
=
ran
⁡
mStRed
⁡
T
5
1
3
msrf
⊢
mStRed
⁡
T
:
P
⟶
P
6
frn
⊢
mStRed
⁡
T
:
P
⟶
P
→
ran
⁡
mStRed
⁡
T
⊆
P
7
5
6
ax-mp
⊢
ran
⁡
mStRed
⁡
T
⊆
P
8
4
7
eqsstri
⊢
S
⊆
P