Metamath Proof Explorer
Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)
|
|
Ref |
Expression |
|
Hypotheses |
mstapst.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
|
|
mstapst.s |
⊢ 𝑆 = ( mStat ‘ 𝑇 ) |
|
Assertion |
mstapst |
⊢ 𝑆 ⊆ 𝑃 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mstapst.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
| 2 |
|
mstapst.s |
⊢ 𝑆 = ( mStat ‘ 𝑇 ) |
| 3 |
|
eqid |
⊢ ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 ) |
| 4 |
3 2
|
mstaval |
⊢ 𝑆 = ran ( mStRed ‘ 𝑇 ) |
| 5 |
1 3
|
msrf |
⊢ ( mStRed ‘ 𝑇 ) : 𝑃 ⟶ 𝑃 |
| 6 |
|
frn |
⊢ ( ( mStRed ‘ 𝑇 ) : 𝑃 ⟶ 𝑃 → ran ( mStRed ‘ 𝑇 ) ⊆ 𝑃 ) |
| 7 |
5 6
|
ax-mp |
⊢ ran ( mStRed ‘ 𝑇 ) ⊆ 𝑃 |
| 8 |
4 7
|
eqsstri |
⊢ 𝑆 ⊆ 𝑃 |