Metamath Proof Explorer


Theorem mstapst

Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mstapst.p 𝑃 = ( mPreSt ‘ 𝑇 )
mstapst.s 𝑆 = ( mStat ‘ 𝑇 )
Assertion mstapst 𝑆𝑃

Proof

Step Hyp Ref Expression
1 mstapst.p 𝑃 = ( mPreSt ‘ 𝑇 )
2 mstapst.s 𝑆 = ( mStat ‘ 𝑇 )
3 eqid ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 )
4 3 2 mstaval 𝑆 = ran ( mStRed ‘ 𝑇 )
5 1 3 msrf ( mStRed ‘ 𝑇 ) : 𝑃𝑃
6 frn ( ( mStRed ‘ 𝑇 ) : 𝑃𝑃 → ran ( mStRed ‘ 𝑇 ) ⊆ 𝑃 )
7 5 6 ax-mp ran ( mStRed ‘ 𝑇 ) ⊆ 𝑃
8 4 7 eqsstri 𝑆𝑃