Metamath Proof Explorer
Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)
|
|
Ref |
Expression |
|
Hypotheses |
mstapst.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
|
|
mstapst.s |
⊢ 𝑆 = ( mStat ‘ 𝑇 ) |
|
Assertion |
mstapst |
⊢ 𝑆 ⊆ 𝑃 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mstapst.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
2 |
|
mstapst.s |
⊢ 𝑆 = ( mStat ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 ) |
4 |
3 2
|
mstaval |
⊢ 𝑆 = ran ( mStRed ‘ 𝑇 ) |
5 |
1 3
|
msrf |
⊢ ( mStRed ‘ 𝑇 ) : 𝑃 ⟶ 𝑃 |
6 |
|
frn |
⊢ ( ( mStRed ‘ 𝑇 ) : 𝑃 ⟶ 𝑃 → ran ( mStRed ‘ 𝑇 ) ⊆ 𝑃 ) |
7 |
5 6
|
ax-mp |
⊢ ran ( mStRed ‘ 𝑇 ) ⊆ 𝑃 |
8 |
4 7
|
eqsstri |
⊢ 𝑆 ⊆ 𝑃 |