Metamath Proof Explorer


Theorem mstaval

Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mstaval.r 𝑅 = ( mStRed ‘ 𝑇 )
mstaval.s 𝑆 = ( mStat ‘ 𝑇 )
Assertion mstaval 𝑆 = ran 𝑅

Proof

Step Hyp Ref Expression
1 mstaval.r 𝑅 = ( mStRed ‘ 𝑇 )
2 mstaval.s 𝑆 = ( mStat ‘ 𝑇 )
3 fveq2 ( 𝑡 = 𝑇 → ( mStRed ‘ 𝑡 ) = ( mStRed ‘ 𝑇 ) )
4 3 1 eqtr4di ( 𝑡 = 𝑇 → ( mStRed ‘ 𝑡 ) = 𝑅 )
5 4 rneqd ( 𝑡 = 𝑇 → ran ( mStRed ‘ 𝑡 ) = ran 𝑅 )
6 df-msta mStat = ( 𝑡 ∈ V ↦ ran ( mStRed ‘ 𝑡 ) )
7 1 fvexi 𝑅 ∈ V
8 7 rnex ran 𝑅 ∈ V
9 5 6 8 fvmpt ( 𝑇 ∈ V → ( mStat ‘ 𝑇 ) = ran 𝑅 )
10 rn0 ran ∅ = ∅
11 10 eqcomi ∅ = ran ∅
12 fvprc ( ¬ 𝑇 ∈ V → ( mStat ‘ 𝑇 ) = ∅ )
13 fvprc ( ¬ 𝑇 ∈ V → ( mStRed ‘ 𝑇 ) = ∅ )
14 1 13 syl5eq ( ¬ 𝑇 ∈ V → 𝑅 = ∅ )
15 14 rneqd ( ¬ 𝑇 ∈ V → ran 𝑅 = ran ∅ )
16 11 12 15 3eqtr4a ( ¬ 𝑇 ∈ V → ( mStat ‘ 𝑇 ) = ran 𝑅 )
17 9 16 pm2.61i ( mStat ‘ 𝑇 ) = ran 𝑅
18 2 17 eqtri 𝑆 = ran 𝑅