| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mstaval.r | 
							⊢ 𝑅  =  ( mStRed ‘ 𝑇 )  | 
						
						
							| 2 | 
							
								
							 | 
							mstaval.s | 
							⊢ 𝑆  =  ( mStat ‘ 𝑇 )  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑡  =  𝑇  →  ( mStRed ‘ 𝑡 )  =  ( mStRed ‘ 𝑇 ) )  | 
						
						
							| 4 | 
							
								3 1
							 | 
							eqtr4di | 
							⊢ ( 𝑡  =  𝑇  →  ( mStRed ‘ 𝑡 )  =  𝑅 )  | 
						
						
							| 5 | 
							
								4
							 | 
							rneqd | 
							⊢ ( 𝑡  =  𝑇  →  ran  ( mStRed ‘ 𝑡 )  =  ran  𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							df-msta | 
							⊢ mStat  =  ( 𝑡  ∈  V  ↦  ran  ( mStRed ‘ 𝑡 ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝑅  ∈  V  | 
						
						
							| 8 | 
							
								7
							 | 
							rnex | 
							⊢ ran  𝑅  ∈  V  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							fvmpt | 
							⊢ ( 𝑇  ∈  V  →  ( mStat ‘ 𝑇 )  =  ran  𝑅 )  | 
						
						
							| 10 | 
							
								
							 | 
							rn0 | 
							⊢ ran  ∅  =  ∅  | 
						
						
							| 11 | 
							
								10
							 | 
							eqcomi | 
							⊢ ∅  =  ran  ∅  | 
						
						
							| 12 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑇  ∈  V  →  ( mStat ‘ 𝑇 )  =  ∅ )  | 
						
						
							| 13 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑇  ∈  V  →  ( mStRed ‘ 𝑇 )  =  ∅ )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							eqtrid | 
							⊢ ( ¬  𝑇  ∈  V  →  𝑅  =  ∅ )  | 
						
						
							| 15 | 
							
								14
							 | 
							rneqd | 
							⊢ ( ¬  𝑇  ∈  V  →  ran  𝑅  =  ran  ∅ )  | 
						
						
							| 16 | 
							
								11 12 15
							 | 
							3eqtr4a | 
							⊢ ( ¬  𝑇  ∈  V  →  ( mStat ‘ 𝑇 )  =  ran  𝑅 )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							pm2.61i | 
							⊢ ( mStat ‘ 𝑇 )  =  ran  𝑅  | 
						
						
							| 18 | 
							
								2 17
							 | 
							eqtri | 
							⊢ 𝑆  =  ran  𝑅  |