Step |
Hyp |
Ref |
Expression |
1 |
|
mstaval.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
2 |
|
mstaval.s |
⊢ 𝑆 = ( mStat ‘ 𝑇 ) |
3 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mStRed ‘ 𝑡 ) = ( mStRed ‘ 𝑇 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mStRed ‘ 𝑡 ) = 𝑅 ) |
5 |
4
|
rneqd |
⊢ ( 𝑡 = 𝑇 → ran ( mStRed ‘ 𝑡 ) = ran 𝑅 ) |
6 |
|
df-msta |
⊢ mStat = ( 𝑡 ∈ V ↦ ran ( mStRed ‘ 𝑡 ) ) |
7 |
1
|
fvexi |
⊢ 𝑅 ∈ V |
8 |
7
|
rnex |
⊢ ran 𝑅 ∈ V |
9 |
5 6 8
|
fvmpt |
⊢ ( 𝑇 ∈ V → ( mStat ‘ 𝑇 ) = ran 𝑅 ) |
10 |
|
rn0 |
⊢ ran ∅ = ∅ |
11 |
10
|
eqcomi |
⊢ ∅ = ran ∅ |
12 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mStat ‘ 𝑇 ) = ∅ ) |
13 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mStRed ‘ 𝑇 ) = ∅ ) |
14 |
1 13
|
syl5eq |
⊢ ( ¬ 𝑇 ∈ V → 𝑅 = ∅ ) |
15 |
14
|
rneqd |
⊢ ( ¬ 𝑇 ∈ V → ran 𝑅 = ran ∅ ) |
16 |
11 12 15
|
3eqtr4a |
⊢ ( ¬ 𝑇 ∈ V → ( mStat ‘ 𝑇 ) = ran 𝑅 ) |
17 |
9 16
|
pm2.61i |
⊢ ( mStat ‘ 𝑇 ) = ran 𝑅 |
18 |
2 17
|
eqtri |
⊢ 𝑆 = ran 𝑅 |