| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 2 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 3 |
|
0cnd |
|- ( ( A e. CC /\ B e. CC ) -> 0 e. CC ) |
| 4 |
1 2 3
|
3jca |
|- ( ( A e. CC /\ B e. CC ) -> ( A e. CC /\ B e. CC /\ 0 e. CC ) ) |
| 5 |
|
mulsubdivbinom2 |
|- ( ( ( A e. CC /\ B e. CC /\ 0 e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 0 ) / C ) ) ) |
| 6 |
4 5
|
stoic3 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 0 ) / C ) ) ) |
| 7 |
|
simp3l |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
| 8 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
| 9 |
7 8
|
mulcld |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
| 10 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
| 11 |
9 10
|
addcld |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) + B ) e. CC ) |
| 12 |
11
|
sqcld |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) + B ) ^ 2 ) e. CC ) |
| 13 |
12
|
subid1d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) = ( ( ( C x. A ) + B ) ^ 2 ) ) |
| 14 |
13
|
eqcomd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) ) |
| 15 |
14
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) / C ) = ( ( ( ( ( C x. A ) + B ) ^ 2 ) - 0 ) / C ) ) |
| 16 |
|
sqcl |
|- ( B e. CC -> ( B ^ 2 ) e. CC ) |
| 17 |
16
|
subid1d |
|- ( B e. CC -> ( ( B ^ 2 ) - 0 ) = ( B ^ 2 ) ) |
| 18 |
17
|
3ad2ant2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B ^ 2 ) - 0 ) = ( B ^ 2 ) ) |
| 19 |
18
|
eqcomd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B ^ 2 ) = ( ( B ^ 2 ) - 0 ) ) |
| 20 |
19
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B ^ 2 ) / C ) = ( ( ( B ^ 2 ) - 0 ) / C ) ) |
| 21 |
20
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 0 ) / C ) ) ) |
| 22 |
6 15 21
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |