| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> A e. CC ) |
| 2 |
1
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
| 3 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
| 4 |
|
simpl |
|- ( ( C e. CC /\ C =/= 0 ) -> C e. CC ) |
| 5 |
4
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
| 6 |
|
mulbinom2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( C x. A ) + B ) ^ 2 ) = ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
| 7 |
6
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) ) |
| 8 |
7
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) ) |
| 9 |
2 3 5 8
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) ) |
| 10 |
5 2
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
| 11 |
10
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) ^ 2 ) e. CC ) |
| 12 |
|
2cnd |
|- ( C e. CC -> 2 e. CC ) |
| 13 |
|
id |
|- ( C e. CC -> C e. CC ) |
| 14 |
12 13
|
mulcld |
|- ( C e. CC -> ( 2 x. C ) e. CC ) |
| 15 |
14
|
adantr |
|- ( ( C e. CC /\ C =/= 0 ) -> ( 2 x. C ) e. CC ) |
| 16 |
15
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 2 x. C ) e. CC ) |
| 17 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
| 18 |
17
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( A x. B ) e. CC ) |
| 19 |
18
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. B ) e. CC ) |
| 20 |
16 19
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( 2 x. C ) x. ( A x. B ) ) e. CC ) |
| 21 |
11 20
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) e. CC ) |
| 22 |
|
sqcl |
|- ( B e. CC -> ( B ^ 2 ) e. CC ) |
| 23 |
22
|
3ad2ant2 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( B ^ 2 ) e. CC ) |
| 24 |
23
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( B ^ 2 ) e. CC ) |
| 25 |
21 24
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) e. CC ) |
| 26 |
|
simpl3 |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> D e. CC ) |
| 27 |
|
simpr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C e. CC /\ C =/= 0 ) ) |
| 28 |
|
divsubdir |
|- ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) e. CC /\ D e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) ) |
| 29 |
25 26 27 28
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) ) |
| 30 |
|
divdir |
|- ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) e. CC /\ ( B ^ 2 ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) ) |
| 31 |
21 24 27 30
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) ) |
| 32 |
|
divdir |
|- ( ( ( ( C x. A ) ^ 2 ) e. CC /\ ( ( 2 x. C ) x. ( A x. B ) ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) ) |
| 33 |
11 20 27 32
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) ) |
| 34 |
|
sqmul |
|- ( ( C e. CC /\ A e. CC ) -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) |
| 35 |
4 1 34
|
syl2anr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) ^ 2 ) = ( ( C ^ 2 ) x. ( A ^ 2 ) ) ) |
| 36 |
35
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) / C ) = ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) ) |
| 37 |
|
sqcl |
|- ( C e. CC -> ( C ^ 2 ) e. CC ) |
| 38 |
37
|
adantr |
|- ( ( C e. CC /\ C =/= 0 ) -> ( C ^ 2 ) e. CC ) |
| 39 |
38
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C ^ 2 ) e. CC ) |
| 40 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 41 |
40
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( A ^ 2 ) e. CC ) |
| 42 |
41
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A ^ 2 ) e. CC ) |
| 43 |
|
div23 |
|- ( ( ( C ^ 2 ) e. CC /\ ( A ^ 2 ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) = ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) ) |
| 44 |
39 42 27 43
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) x. ( A ^ 2 ) ) / C ) = ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) ) |
| 45 |
|
sqdivid |
|- ( ( C e. CC /\ C =/= 0 ) -> ( ( C ^ 2 ) / C ) = C ) |
| 46 |
45
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C ^ 2 ) / C ) = C ) |
| 47 |
46
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C ^ 2 ) / C ) x. ( A ^ 2 ) ) = ( C x. ( A ^ 2 ) ) ) |
| 48 |
36 44 47
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) ^ 2 ) / C ) = ( C x. ( A ^ 2 ) ) ) |
| 49 |
|
div23 |
|- ( ( ( 2 x. C ) e. CC /\ ( A x. B ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) ) |
| 50 |
16 19 27 49
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) ) |
| 51 |
|
2cnd |
|- ( ( C e. CC /\ C =/= 0 ) -> 2 e. CC ) |
| 52 |
|
simpr |
|- ( ( C e. CC /\ C =/= 0 ) -> C =/= 0 ) |
| 53 |
51 4 52
|
divcan4d |
|- ( ( C e. CC /\ C =/= 0 ) -> ( ( 2 x. C ) / C ) = 2 ) |
| 54 |
53
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( 2 x. C ) / C ) = 2 ) |
| 55 |
54
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) / C ) x. ( A x. B ) ) = ( 2 x. ( A x. B ) ) ) |
| 56 |
50 55
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) = ( 2 x. ( A x. B ) ) ) |
| 57 |
48 56
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) / C ) + ( ( ( 2 x. C ) x. ( A x. B ) ) / C ) ) = ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) ) |
| 58 |
33 57
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) = ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) ) |
| 59 |
58
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) / C ) + ( ( B ^ 2 ) / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |
| 60 |
31 59
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) ) |
| 61 |
60
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) / C ) - ( D / C ) ) = ( ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) - ( D / C ) ) ) |
| 62 |
5 42
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. ( A ^ 2 ) ) e. CC ) |
| 63 |
|
2cnd |
|- ( ( A e. CC /\ B e. CC ) -> 2 e. CC ) |
| 64 |
63 17
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
| 65 |
64
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) |
| 66 |
65
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 2 x. ( A x. B ) ) e. CC ) |
| 67 |
62 66
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) e. CC ) |
| 68 |
52
|
adantl |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
| 69 |
24 5 68
|
divcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B ^ 2 ) / C ) e. CC ) |
| 70 |
26 5 68
|
divcld |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( D / C ) e. CC ) |
| 71 |
67 69 70
|
addsubassd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( B ^ 2 ) / C ) ) - ( D / C ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) ) |
| 72 |
29 61 71
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( ( C x. A ) ^ 2 ) + ( ( 2 x. C ) x. ( A x. B ) ) ) + ( B ^ 2 ) ) - D ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) ) |
| 73 |
|
divsubdir |
|- ( ( ( B ^ 2 ) e. CC /\ D e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) - D ) / C ) = ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) |
| 74 |
24 26 27 73
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) - D ) / C ) = ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) |
| 75 |
74
|
eqcomd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( B ^ 2 ) / C ) - ( D / C ) ) = ( ( ( B ^ 2 ) - D ) / C ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) / C ) - ( D / C ) ) ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - D ) / C ) ) ) |
| 77 |
9 72 76
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ D e. CC ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( ( ( C x. A ) + B ) ^ 2 ) - D ) / C ) = ( ( ( C x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - D ) / C ) ) ) |