| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( a = b -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
| 2 |
1
|
2rexbidv |
|- ( a = b -> ( E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. X E. q e. Y b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) |
| 3 |
|
oveq1 |
|- ( p = r -> ( p x.s B ) = ( r x.s B ) ) |
| 4 |
3
|
oveq1d |
|- ( p = r -> ( ( p x.s B ) +s ( A x.s q ) ) = ( ( r x.s B ) +s ( A x.s q ) ) ) |
| 5 |
|
oveq1 |
|- ( p = r -> ( p x.s q ) = ( r x.s q ) ) |
| 6 |
4 5
|
oveq12d |
|- ( p = r -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) ) |
| 7 |
6
|
eqeq2d |
|- ( p = r -> ( b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> b = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) ) ) |
| 8 |
|
oveq2 |
|- ( q = s -> ( A x.s q ) = ( A x.s s ) ) |
| 9 |
8
|
oveq2d |
|- ( q = s -> ( ( r x.s B ) +s ( A x.s q ) ) = ( ( r x.s B ) +s ( A x.s s ) ) ) |
| 10 |
|
oveq2 |
|- ( q = s -> ( r x.s q ) = ( r x.s s ) ) |
| 11 |
9 10
|
oveq12d |
|- ( q = s -> ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
| 12 |
11
|
eqeq2d |
|- ( q = s -> ( b = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) <-> b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
| 13 |
7 12
|
cbvrex2vw |
|- ( E. p e. X E. q e. Y b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
| 14 |
2 13
|
bitrdi |
|- ( a = b -> ( E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) |
| 15 |
14
|
cbvabv |
|- { a | E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } = { b | E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } |