| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( a = b -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) | 
						
							| 2 | 1 | 2rexbidv |  |-  ( a = b -> ( E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. X E. q e. Y b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) | 
						
							| 3 |  | oveq1 |  |-  ( p = r -> ( p x.s B ) = ( r x.s B ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( p = r -> ( ( p x.s B ) +s ( A x.s q ) ) = ( ( r x.s B ) +s ( A x.s q ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( p = r -> ( p x.s q ) = ( r x.s q ) ) | 
						
							| 6 | 4 5 | oveq12d |  |-  ( p = r -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( p = r -> ( b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> b = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( q = s -> ( A x.s q ) = ( A x.s s ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( q = s -> ( ( r x.s B ) +s ( A x.s q ) ) = ( ( r x.s B ) +s ( A x.s s ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( q = s -> ( r x.s q ) = ( r x.s s ) ) | 
						
							| 11 | 9 10 | oveq12d |  |-  ( q = s -> ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( q = s -> ( b = ( ( ( r x.s B ) +s ( A x.s q ) ) -s ( r x.s q ) ) <-> b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) | 
						
							| 13 | 7 12 | cbvrex2vw |  |-  ( E. p e. X E. q e. Y b = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) | 
						
							| 14 | 2 13 | bitrdi |  |-  ( a = b -> ( E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) | 
						
							| 15 | 14 | cbvabv |  |-  { a | E. p e. X E. q e. Y a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } = { b | E. r e. X E. s e. Y b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } |