Metamath Proof Explorer


Theorem nbgr0vtx

Description: In a null graph (with no vertices), all neighborhoods are empty. (Contributed by AV, 15-Nov-2020)

Ref Expression
Assertion nbgr0vtx
|- ( ( Vtx ` G ) = (/) -> ( G NeighbVtx K ) = (/) )

Proof

Step Hyp Ref Expression
1 ral0
 |-  A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e
2 difeq1
 |-  ( ( Vtx ` G ) = (/) -> ( ( Vtx ` G ) \ { K } ) = ( (/) \ { K } ) )
3 0dif
 |-  ( (/) \ { K } ) = (/)
4 2 3 eqtrdi
 |-  ( ( Vtx ` G ) = (/) -> ( ( Vtx ` G ) \ { K } ) = (/) )
5 4 raleqdv
 |-  ( ( Vtx ` G ) = (/) -> ( A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e <-> A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e ) )
6 1 5 mpbiri
 |-  ( ( Vtx ` G ) = (/) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e )
7 6 nbgr0vtxlem
 |-  ( ( Vtx ` G ) = (/) -> ( G NeighbVtx K ) = (/) )