Description: Reverse closure law, in contrast to ndmovrcl where it is required that the operation's domain doesn't contain the empty set ( -. (/) e. S ), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ndmaov.1 | |- dom F = ( S X. S ) | |
| Assertion | ndmaovrcl | |- ( (( A F B )) e. S -> ( A e. S /\ B e. S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ndmaov.1 | |- dom F = ( S X. S ) | |
| 2 | aovvdm | |- ( (( A F B )) e. S -> <. A , B >. e. dom F ) | |
| 3 | opelxp | |- ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) ) | |
| 4 | 3 | biimpi | |- ( <. A , B >. e. ( S X. S ) -> ( A e. S /\ B e. S ) ) | 
| 5 | 4 1 | eleq2s | |- ( <. A , B >. e. dom F -> ( A e. S /\ B e. S ) ) | 
| 6 | 2 5 | syl | |- ( (( A F B )) e. S -> ( A e. S /\ B e. S ) ) |