| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ndmaov.1 |  |-  dom F = ( S X. S ) | 
						
							| 2 |  | opelxp |  |-  ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) ) | 
						
							| 3 | 1 | eqcomi |  |-  ( S X. S ) = dom F | 
						
							| 4 | 3 | eleq2i |  |-  ( <. A , B >. e. ( S X. S ) <-> <. A , B >. e. dom F ) | 
						
							| 5 | 2 4 | bitr3i |  |-  ( ( A e. S /\ B e. S ) <-> <. A , B >. e. dom F ) | 
						
							| 6 |  | ndmaov |  |-  ( -. <. A , B >. e. dom F -> (( A F B )) = _V ) | 
						
							| 7 | 5 6 | sylnbi |  |-  ( -. ( A e. S /\ B e. S ) -> (( A F B )) = _V ) | 
						
							| 8 |  | ancom |  |-  ( ( A e. S /\ B e. S ) <-> ( B e. S /\ A e. S ) ) | 
						
							| 9 |  | opelxp |  |-  ( <. B , A >. e. ( S X. S ) <-> ( B e. S /\ A e. S ) ) | 
						
							| 10 | 3 | eleq2i |  |-  ( <. B , A >. e. ( S X. S ) <-> <. B , A >. e. dom F ) | 
						
							| 11 | 8 9 10 | 3bitr2i |  |-  ( ( A e. S /\ B e. S ) <-> <. B , A >. e. dom F ) | 
						
							| 12 |  | ndmaov |  |-  ( -. <. B , A >. e. dom F -> (( B F A )) = _V ) | 
						
							| 13 | 11 12 | sylnbi |  |-  ( -. ( A e. S /\ B e. S ) -> (( B F A )) = _V ) | 
						
							| 14 | 7 13 | eqtr4d |  |-  ( -. ( A e. S /\ B e. S ) -> (( A F B )) = (( B F A )) ) |