| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ndmaov.1 |
|- dom F = ( S X. S ) |
| 2 |
|
opelxp |
|- ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) ) |
| 3 |
1
|
eqcomi |
|- ( S X. S ) = dom F |
| 4 |
3
|
eleq2i |
|- ( <. A , B >. e. ( S X. S ) <-> <. A , B >. e. dom F ) |
| 5 |
2 4
|
bitr3i |
|- ( ( A e. S /\ B e. S ) <-> <. A , B >. e. dom F ) |
| 6 |
|
ndmaov |
|- ( -. <. A , B >. e. dom F -> (( A F B )) = _V ) |
| 7 |
5 6
|
sylnbi |
|- ( -. ( A e. S /\ B e. S ) -> (( A F B )) = _V ) |
| 8 |
|
ancom |
|- ( ( A e. S /\ B e. S ) <-> ( B e. S /\ A e. S ) ) |
| 9 |
|
opelxp |
|- ( <. B , A >. e. ( S X. S ) <-> ( B e. S /\ A e. S ) ) |
| 10 |
3
|
eleq2i |
|- ( <. B , A >. e. ( S X. S ) <-> <. B , A >. e. dom F ) |
| 11 |
8 9 10
|
3bitr2i |
|- ( ( A e. S /\ B e. S ) <-> <. B , A >. e. dom F ) |
| 12 |
|
ndmaov |
|- ( -. <. B , A >. e. dom F -> (( B F A )) = _V ) |
| 13 |
11 12
|
sylnbi |
|- ( -. ( A e. S /\ B e. S ) -> (( B F A )) = _V ) |
| 14 |
7 13
|
eqtr4d |
|- ( -. ( A e. S /\ B e. S ) -> (( A F B )) = (( B F A )) ) |