Metamath Proof Explorer


Theorem ndmaovcom

Description: Any operation is commutative outside its domain, analogous to ndmovcom . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis ndmaov.1
|- dom F = ( S X. S )
Assertion ndmaovcom
|- ( -. ( A e. S /\ B e. S ) -> (( A F B )) = (( B F A )) )

Proof

Step Hyp Ref Expression
1 ndmaov.1
 |-  dom F = ( S X. S )
2 opelxp
 |-  ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) )
3 1 eqcomi
 |-  ( S X. S ) = dom F
4 3 eleq2i
 |-  ( <. A , B >. e. ( S X. S ) <-> <. A , B >. e. dom F )
5 2 4 bitr3i
 |-  ( ( A e. S /\ B e. S ) <-> <. A , B >. e. dom F )
6 ndmaov
 |-  ( -. <. A , B >. e. dom F -> (( A F B )) = _V )
7 5 6 sylnbi
 |-  ( -. ( A e. S /\ B e. S ) -> (( A F B )) = _V )
8 ancom
 |-  ( ( A e. S /\ B e. S ) <-> ( B e. S /\ A e. S ) )
9 opelxp
 |-  ( <. B , A >. e. ( S X. S ) <-> ( B e. S /\ A e. S ) )
10 3 eleq2i
 |-  ( <. B , A >. e. ( S X. S ) <-> <. B , A >. e. dom F )
11 8 9 10 3bitr2i
 |-  ( ( A e. S /\ B e. S ) <-> <. B , A >. e. dom F )
12 ndmaov
 |-  ( -. <. B , A >. e. dom F -> (( B F A )) = _V )
13 11 12 sylnbi
 |-  ( -. ( A e. S /\ B e. S ) -> (( B F A )) = _V )
14 7 13 eqtr4d
 |-  ( -. ( A e. S /\ B e. S ) -> (( A F B )) = (( B F A )) )