Metamath Proof Explorer


Theorem ndmaovcom

Description: Any operation is commutative outside its domain, analogous to ndmovcom . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis ndmaov.1 dom F = S × S
Assertion ndmaovcom ¬ A S B S A F B = B F A

Proof

Step Hyp Ref Expression
1 ndmaov.1 dom F = S × S
2 opelxp A B S × S A S B S
3 1 eqcomi S × S = dom F
4 3 eleq2i A B S × S A B dom F
5 2 4 bitr3i A S B S A B dom F
6 ndmaov ¬ A B dom F A F B = V
7 5 6 sylnbi ¬ A S B S A F B = V
8 ancom A S B S B S A S
9 opelxp B A S × S B S A S
10 3 eleq2i B A S × S B A dom F
11 8 9 10 3bitr2i A S B S B A dom F
12 ndmaov ¬ B A dom F B F A = V
13 11 12 sylnbi ¬ A S B S B F A = V
14 7 13 eqtr4d ¬ A S B S A F B = B F A