| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ndmaov.1 | ⊢ dom  𝐹  =  ( 𝑆  ×  𝑆 ) | 
						
							| 2 |  | opelxp | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 3 | 1 | eqcomi | ⊢ ( 𝑆  ×  𝑆 )  =  dom  𝐹 | 
						
							| 4 | 3 | eleq2i | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  〈 𝐴 ,  𝐵 〉  ∈  dom  𝐹 ) | 
						
							| 5 | 2 4 | bitr3i | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  ↔  〈 𝐴 ,  𝐵 〉  ∈  dom  𝐹 ) | 
						
							| 6 |  | ndmaov | ⊢ ( ¬  〈 𝐴 ,  𝐵 〉  ∈  dom  𝐹  →   (( 𝐴 𝐹 𝐵 ))   =  V ) | 
						
							| 7 | 5 6 | sylnbi | ⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →   (( 𝐴 𝐹 𝐵 ))   =  V ) | 
						
							| 8 |  | ancom | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  ↔  ( 𝐵  ∈  𝑆  ∧  𝐴  ∈  𝑆 ) ) | 
						
							| 9 |  | opelxp | ⊢ ( 〈 𝐵 ,  𝐴 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  ( 𝐵  ∈  𝑆  ∧  𝐴  ∈  𝑆 ) ) | 
						
							| 10 | 3 | eleq2i | ⊢ ( 〈 𝐵 ,  𝐴 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  〈 𝐵 ,  𝐴 〉  ∈  dom  𝐹 ) | 
						
							| 11 | 8 9 10 | 3bitr2i | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  ↔  〈 𝐵 ,  𝐴 〉  ∈  dom  𝐹 ) | 
						
							| 12 |  | ndmaov | ⊢ ( ¬  〈 𝐵 ,  𝐴 〉  ∈  dom  𝐹  →   (( 𝐵 𝐹 𝐴 ))   =  V ) | 
						
							| 13 | 11 12 | sylnbi | ⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →   (( 𝐵 𝐹 𝐴 ))   =  V ) | 
						
							| 14 | 7 13 | eqtr4d | ⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →   (( 𝐴 𝐹 𝐵 ))   =   (( 𝐵 𝐹 𝐴 ))  ) |