Metamath Proof Explorer


Theorem ndmaovcom

Description: Any operation is commutative outside its domain, analogous to ndmovcom . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis ndmaov.1 dom 𝐹 = ( 𝑆 × 𝑆 )
Assertion ndmaovcom ( ¬ ( 𝐴𝑆𝐵𝑆 ) → (( 𝐴 𝐹 𝐵 )) = (( 𝐵 𝐹 𝐴 )) )

Proof

Step Hyp Ref Expression
1 ndmaov.1 dom 𝐹 = ( 𝑆 × 𝑆 )
2 opelxp ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴𝑆𝐵𝑆 ) )
3 1 eqcomi ( 𝑆 × 𝑆 ) = dom 𝐹
4 3 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑆 × 𝑆 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 )
5 2 4 bitr3i ( ( 𝐴𝑆𝐵𝑆 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 )
6 ndmaov ( ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 → (( 𝐴 𝐹 𝐵 )) = V )
7 5 6 sylnbi ( ¬ ( 𝐴𝑆𝐵𝑆 ) → (( 𝐴 𝐹 𝐵 )) = V )
8 ancom ( ( 𝐴𝑆𝐵𝑆 ) ↔ ( 𝐵𝑆𝐴𝑆 ) )
9 opelxp ( ⟨ 𝐵 , 𝐴 ⟩ ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐵𝑆𝐴𝑆 ) )
10 3 eleq2i ( ⟨ 𝐵 , 𝐴 ⟩ ∈ ( 𝑆 × 𝑆 ) ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ dom 𝐹 )
11 8 9 10 3bitr2i ( ( 𝐴𝑆𝐵𝑆 ) ↔ ⟨ 𝐵 , 𝐴 ⟩ ∈ dom 𝐹 )
12 ndmaov ( ¬ ⟨ 𝐵 , 𝐴 ⟩ ∈ dom 𝐹 → (( 𝐵 𝐹 𝐴 )) = V )
13 11 12 sylnbi ( ¬ ( 𝐴𝑆𝐵𝑆 ) → (( 𝐵 𝐹 𝐴 )) = V )
14 7 13 eqtr4d ( ¬ ( 𝐴𝑆𝐵𝑆 ) → (( 𝐴 𝐹 𝐵 )) = (( 𝐵 𝐹 𝐴 )) )