Step |
Hyp |
Ref |
Expression |
1 |
|
ndmaov.1 |
⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) |
2 |
1
|
eleq2i |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 ↔ 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ) |
3 |
|
opelxp |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
4 |
2 3
|
bitri |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 ↔ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
5 |
|
aovvdm |
⊢ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 → 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) |
6 |
1
|
eleq2i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ) |
7 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
8 |
6 7
|
bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
9 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ) |
10 |
9
|
simplbi2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
11 |
8 10
|
sylbi |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐶 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
12 |
5 11
|
syl |
⊢ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
13 |
12
|
imp |
⊢ ( ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
14 |
4 13
|
sylbi |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
15 |
|
ndmaov |
⊢ ( ¬ 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 → (( (( 𝐴 𝐹 𝐵 )) 𝐹 𝐶 )) = V ) |
16 |
14 15
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( (( 𝐴 𝐹 𝐵 )) 𝐹 𝐶 )) = V ) |
17 |
1
|
eleq2i |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 ↔ 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ) |
18 |
|
opelxp |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) ) |
19 |
17 18
|
bitri |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) ) |
20 |
|
aovvdm |
⊢ ( (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 → 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ) |
21 |
1
|
eleq2i |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ↔ 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ) |
22 |
|
opelxp |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
23 |
21 22
|
bitri |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
24 |
|
3anass |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
25 |
24
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
26 |
25
|
a1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
27 |
26
|
expcom |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) ) |
28 |
23 27
|
sylbi |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) ) |
29 |
20 28
|
syl |
⊢ ( (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) ) |
30 |
29
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
31 |
19 30
|
sylbi |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
32 |
31
|
pm2.43i |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
33 |
|
ndmaov |
⊢ ( ¬ 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → (( 𝐴 𝐹 (( 𝐵 𝐹 𝐶 )) )) = V ) |
34 |
32 33
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( 𝐴 𝐹 (( 𝐵 𝐹 𝐶 )) )) = V ) |
35 |
16 34
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( (( 𝐴 𝐹 𝐵 )) 𝐹 𝐶 )) = (( 𝐴 𝐹 (( 𝐵 𝐹 𝐶 )) )) ) |