| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ndmaov.1 |
⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) |
| 2 |
1
|
eleq2i |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 ↔ 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 3 |
|
opelxp |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 4 |
2 3
|
bitri |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 ↔ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 5 |
|
aovvdm |
⊢ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 → 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) |
| 6 |
1
|
eleq2i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 7 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 8 |
6 7
|
bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 9 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑆 ) ) |
| 10 |
9
|
simplbi2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐶 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 11 |
8 10
|
sylbi |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐶 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 12 |
5 11
|
syl |
⊢ ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 → ( 𝐶 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( (( 𝐴 𝐹 𝐵 )) ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 14 |
4 13
|
sylbi |
⊢ ( 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 15 |
|
ndmaov |
⊢ ( ¬ 〈 (( 𝐴 𝐹 𝐵 )) , 𝐶 〉 ∈ dom 𝐹 → (( (( 𝐴 𝐹 𝐵 )) 𝐹 𝐶 )) = V ) |
| 16 |
14 15
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( (( 𝐴 𝐹 𝐵 )) 𝐹 𝐶 )) = V ) |
| 17 |
1
|
eleq2i |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 ↔ 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 18 |
|
opelxp |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) ) |
| 19 |
17 18
|
bitri |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) ) |
| 20 |
|
aovvdm |
⊢ ( (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 → 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ) |
| 21 |
1
|
eleq2i |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ↔ 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 22 |
|
opelxp |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 23 |
21 22
|
bitri |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 24 |
|
3anass |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 25 |
24
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 26 |
25
|
a1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 27 |
26
|
expcom |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) ) |
| 28 |
23 27
|
sylbi |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) ) |
| 29 |
20 28
|
syl |
⊢ ( (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) ) |
| 30 |
29
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 31 |
19 30
|
sylbi |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 32 |
31
|
pm2.43i |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 33 |
|
ndmaov |
⊢ ( ¬ 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐹 → (( 𝐴 𝐹 (( 𝐵 𝐹 𝐶 )) )) = V ) |
| 34 |
32 33
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( 𝐴 𝐹 (( 𝐵 𝐹 𝐶 )) )) = V ) |
| 35 |
16 34
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( (( 𝐴 𝐹 𝐵 )) 𝐹 𝐶 )) = (( 𝐴 𝐹 (( 𝐵 𝐹 𝐶 )) )) ) |