| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ndmaov.1 |
⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) |
| 2 |
|
ndmaov.6 |
⊢ dom 𝐺 = ( 𝑆 × 𝑆 ) |
| 3 |
2
|
eleq2i |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐺 ↔ 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 4 |
|
opelxp |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) ) |
| 5 |
3 4
|
bitri |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐺 ↔ ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) ) |
| 6 |
|
aovvdm |
⊢ ( (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 → 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ) |
| 7 |
1
|
eleq2i |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ↔ 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 8 |
|
opelxp |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 9 |
7 8
|
bitri |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 10 |
|
3anass |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 11 |
10
|
simplbi2com |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 12 |
9 11
|
sylbi |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 13 |
6 12
|
syl |
⊢ ( (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 14 |
13
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ (( 𝐵 𝐹 𝐶 )) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 15 |
5 14
|
sylbi |
⊢ ( 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐺 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 16 |
|
ndmaov |
⊢ ( ¬ 〈 𝐴 , (( 𝐵 𝐹 𝐶 )) 〉 ∈ dom 𝐺 → (( 𝐴 𝐺 (( 𝐵 𝐹 𝐶 )) )) = V ) |
| 17 |
15 16
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( 𝐴 𝐺 (( 𝐵 𝐹 𝐶 )) )) = V ) |
| 18 |
1
|
eleq2i |
⊢ ( 〈 (( 𝐴 𝐺 𝐵 )) , (( 𝐴 𝐺 𝐶 )) 〉 ∈ dom 𝐹 ↔ 〈 (( 𝐴 𝐺 𝐵 )) , (( 𝐴 𝐺 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 19 |
|
opelxp |
⊢ ( 〈 (( 𝐴 𝐺 𝐵 )) , (( 𝐴 𝐺 𝐶 )) 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( (( 𝐴 𝐺 𝐵 )) ∈ 𝑆 ∧ (( 𝐴 𝐺 𝐶 )) ∈ 𝑆 ) ) |
| 20 |
18 19
|
bitri |
⊢ ( 〈 (( 𝐴 𝐺 𝐵 )) , (( 𝐴 𝐺 𝐶 )) 〉 ∈ dom 𝐹 ↔ ( (( 𝐴 𝐺 𝐵 )) ∈ 𝑆 ∧ (( 𝐴 𝐺 𝐶 )) ∈ 𝑆 ) ) |
| 21 |
|
aovvdm |
⊢ ( (( 𝐴 𝐺 𝐵 )) ∈ 𝑆 → 〈 𝐴 , 𝐵 〉 ∈ dom 𝐺 ) |
| 22 |
2
|
eleq2i |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐺 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 23 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 24 |
22 23
|
bitri |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐺 ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 25 |
2
|
eleq2i |
⊢ ( 〈 𝐴 , 𝐶 〉 ∈ dom 𝐺 ↔ 〈 𝐴 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ) |
| 26 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐶 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 27 |
25 26
|
bitri |
⊢ ( 〈 𝐴 , 𝐶 〉 ∈ dom 𝐺 ↔ ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 28 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐴 ∈ 𝑆 ) |
| 29 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐵 ∈ 𝑆 ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐶 ∈ 𝑆 ) |
| 31 |
28 29 30
|
3jca |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 32 |
31
|
ex |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 33 |
27 32
|
sylbi |
⊢ ( 〈 𝐴 , 𝐶 〉 ∈ dom 𝐺 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 34 |
|
aovvdm |
⊢ ( (( 𝐴 𝐺 𝐶 )) ∈ 𝑆 → 〈 𝐴 , 𝐶 〉 ∈ dom 𝐺 ) |
| 35 |
33 34
|
syl11 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( (( 𝐴 𝐺 𝐶 )) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 36 |
24 35
|
sylbi |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐺 → ( (( 𝐴 𝐺 𝐶 )) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 37 |
21 36
|
syl |
⊢ ( (( 𝐴 𝐺 𝐵 )) ∈ 𝑆 → ( (( 𝐴 𝐺 𝐶 )) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 38 |
37
|
imp |
⊢ ( ( (( 𝐴 𝐺 𝐵 )) ∈ 𝑆 ∧ (( 𝐴 𝐺 𝐶 )) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 39 |
20 38
|
sylbi |
⊢ ( 〈 (( 𝐴 𝐺 𝐵 )) , (( 𝐴 𝐺 𝐶 )) 〉 ∈ dom 𝐹 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 40 |
|
ndmaov |
⊢ ( ¬ 〈 (( 𝐴 𝐺 𝐵 )) , (( 𝐴 𝐺 𝐶 )) 〉 ∈ dom 𝐹 → (( (( 𝐴 𝐺 𝐵 )) 𝐹 (( 𝐴 𝐺 𝐶 )) )) = V ) |
| 41 |
39 40
|
nsyl5 |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( (( 𝐴 𝐺 𝐵 )) 𝐹 (( 𝐴 𝐺 𝐶 )) )) = V ) |
| 42 |
17 41
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → (( 𝐴 𝐺 (( 𝐵 𝐹 𝐶 )) )) = (( (( 𝐴 𝐺 𝐵 )) 𝐹 (( 𝐴 𝐺 𝐶 )) )) ) |