| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ndmaov.1 | ⊢ dom  𝐹  =  ( 𝑆  ×  𝑆 ) | 
						
							| 2 |  | ndmaov.6 | ⊢ dom  𝐺  =  ( 𝑆  ×  𝑆 ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( 〈 𝐴 ,   (( 𝐵 𝐹 𝐶 ))  〉  ∈  dom  𝐺  ↔  〈 𝐴 ,   (( 𝐵 𝐹 𝐶 ))  〉  ∈  ( 𝑆  ×  𝑆 ) ) | 
						
							| 4 |  | opelxp | ⊢ ( 〈 𝐴 ,   (( 𝐵 𝐹 𝐶 ))  〉  ∈  ( 𝑆  ×  𝑆 )  ↔  ( 𝐴  ∈  𝑆  ∧   (( 𝐵 𝐹 𝐶 ))   ∈  𝑆 ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( 〈 𝐴 ,   (( 𝐵 𝐹 𝐶 ))  〉  ∈  dom  𝐺  ↔  ( 𝐴  ∈  𝑆  ∧   (( 𝐵 𝐹 𝐶 ))   ∈  𝑆 ) ) | 
						
							| 6 |  | aovvdm | ⊢ (  (( 𝐵 𝐹 𝐶 ))   ∈  𝑆  →  〈 𝐵 ,  𝐶 〉  ∈  dom  𝐹 ) | 
						
							| 7 | 1 | eleq2i | ⊢ ( 〈 𝐵 ,  𝐶 〉  ∈  dom  𝐹  ↔  〈 𝐵 ,  𝐶 〉  ∈  ( 𝑆  ×  𝑆 ) ) | 
						
							| 8 |  | opelxp | ⊢ ( 〈 𝐵 ,  𝐶 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( 〈 𝐵 ,  𝐶 〉  ∈  dom  𝐹  ↔  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ↔  ( 𝐴  ∈  𝑆  ∧  ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 11 | 10 | simplbi2com | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  ( 𝐴  ∈  𝑆  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 12 | 9 11 | sylbi | ⊢ ( 〈 𝐵 ,  𝐶 〉  ∈  dom  𝐹  →  ( 𝐴  ∈  𝑆  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 13 | 6 12 | syl | ⊢ (  (( 𝐵 𝐹 𝐶 ))   ∈  𝑆  →  ( 𝐴  ∈  𝑆  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( 𝐴  ∈  𝑆  ∧   (( 𝐵 𝐹 𝐶 ))   ∈  𝑆 )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 15 | 5 14 | sylbi | ⊢ ( 〈 𝐴 ,   (( 𝐵 𝐹 𝐶 ))  〉  ∈  dom  𝐺  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 16 |  | ndmaov | ⊢ ( ¬  〈 𝐴 ,   (( 𝐵 𝐹 𝐶 ))  〉  ∈  dom  𝐺  →   (( 𝐴 𝐺  (( 𝐵 𝐹 𝐶 ))  ))   =  V ) | 
						
							| 17 | 15 16 | nsyl5 | ⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →   (( 𝐴 𝐺  (( 𝐵 𝐹 𝐶 ))  ))   =  V ) | 
						
							| 18 | 1 | eleq2i | ⊢ ( 〈  (( 𝐴 𝐺 𝐵 ))  ,   (( 𝐴 𝐺 𝐶 ))  〉  ∈  dom  𝐹  ↔  〈  (( 𝐴 𝐺 𝐵 ))  ,   (( 𝐴 𝐺 𝐶 ))  〉  ∈  ( 𝑆  ×  𝑆 ) ) | 
						
							| 19 |  | opelxp | ⊢ ( 〈  (( 𝐴 𝐺 𝐵 ))  ,   (( 𝐴 𝐺 𝐶 ))  〉  ∈  ( 𝑆  ×  𝑆 )  ↔  (  (( 𝐴 𝐺 𝐵 ))   ∈  𝑆  ∧   (( 𝐴 𝐺 𝐶 ))   ∈  𝑆 ) ) | 
						
							| 20 | 18 19 | bitri | ⊢ ( 〈  (( 𝐴 𝐺 𝐵 ))  ,   (( 𝐴 𝐺 𝐶 ))  〉  ∈  dom  𝐹  ↔  (  (( 𝐴 𝐺 𝐵 ))   ∈  𝑆  ∧   (( 𝐴 𝐺 𝐶 ))   ∈  𝑆 ) ) | 
						
							| 21 |  | aovvdm | ⊢ (  (( 𝐴 𝐺 𝐵 ))   ∈  𝑆  →  〈 𝐴 ,  𝐵 〉  ∈  dom  𝐺 ) | 
						
							| 22 | 2 | eleq2i | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  dom  𝐺  ↔  〈 𝐴 ,  𝐵 〉  ∈  ( 𝑆  ×  𝑆 ) ) | 
						
							| 23 |  | opelxp | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 24 | 22 23 | bitri | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  dom  𝐺  ↔  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 25 | 2 | eleq2i | ⊢ ( 〈 𝐴 ,  𝐶 〉  ∈  dom  𝐺  ↔  〈 𝐴 ,  𝐶 〉  ∈  ( 𝑆  ×  𝑆 ) ) | 
						
							| 26 |  | opelxp | ⊢ ( 〈 𝐴 ,  𝐶 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 27 | 25 26 | bitri | ⊢ ( 〈 𝐴 ,  𝐶 〉  ∈  dom  𝐺  ↔  ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 28 |  | simpll | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  𝐴  ∈  𝑆 ) | 
						
							| 29 |  | simprr | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  𝐵  ∈  𝑆 ) | 
						
							| 30 |  | simplr | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  𝐶  ∈  𝑆 ) | 
						
							| 31 | 28 29 30 | 3jca | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 32 | 31 | ex | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 33 | 27 32 | sylbi | ⊢ ( 〈 𝐴 ,  𝐶 〉  ∈  dom  𝐺  →  ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 34 |  | aovvdm | ⊢ (  (( 𝐴 𝐺 𝐶 ))   ∈  𝑆  →  〈 𝐴 ,  𝐶 〉  ∈  dom  𝐺 ) | 
						
							| 35 | 33 34 | syl11 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  (  (( 𝐴 𝐺 𝐶 ))   ∈  𝑆  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 36 | 24 35 | sylbi | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  dom  𝐺  →  (  (( 𝐴 𝐺 𝐶 ))   ∈  𝑆  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 37 | 21 36 | syl | ⊢ (  (( 𝐴 𝐺 𝐵 ))   ∈  𝑆  →  (  (( 𝐴 𝐺 𝐶 ))   ∈  𝑆  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 38 | 37 | imp | ⊢ ( (  (( 𝐴 𝐺 𝐵 ))   ∈  𝑆  ∧   (( 𝐴 𝐺 𝐶 ))   ∈  𝑆 )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 39 | 20 38 | sylbi | ⊢ ( 〈  (( 𝐴 𝐺 𝐵 ))  ,   (( 𝐴 𝐺 𝐶 ))  〉  ∈  dom  𝐹  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) ) | 
						
							| 40 |  | ndmaov | ⊢ ( ¬  〈  (( 𝐴 𝐺 𝐵 ))  ,   (( 𝐴 𝐺 𝐶 ))  〉  ∈  dom  𝐹  →   ((  (( 𝐴 𝐺 𝐵 ))  𝐹  (( 𝐴 𝐺 𝐶 ))  ))   =  V ) | 
						
							| 41 | 39 40 | nsyl5 | ⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →   ((  (( 𝐴 𝐺 𝐵 ))  𝐹  (( 𝐴 𝐺 𝐶 ))  ))   =  V ) | 
						
							| 42 | 17 41 | eqtr4d | ⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →   (( 𝐴 𝐺  (( 𝐵 𝐹 𝐶 ))  ))   =   ((  (( 𝐴 𝐺 𝐵 ))  𝐹  (( 𝐴 𝐺 𝐶 ))  ))  ) |