Metamath Proof Explorer


Theorem ndmaovdistr

Description: Any operation is distributive outside its domain. In contrast to ndmovdistr where it is required that the operation's domain doesn't contain the empty set ( -. (/) e. S ), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses ndmaov.1 dom F = S × S
ndmaov.6 dom G = S × S
Assertion ndmaovdistr ¬ A S B S C S A G B F C = A G B F A G C

Proof

Step Hyp Ref Expression
1 ndmaov.1 dom F = S × S
2 ndmaov.6 dom G = S × S
3 2 eleq2i A B F C dom G A B F C S × S
4 opelxp A B F C S × S A S B F C S
5 3 4 bitri A B F C dom G A S B F C S
6 aovvdm B F C S B C dom F
7 1 eleq2i B C dom F B C S × S
8 opelxp B C S × S B S C S
9 7 8 bitri B C dom F B S C S
10 3anass A S B S C S A S B S C S
11 10 simplbi2com B S C S A S A S B S C S
12 9 11 sylbi B C dom F A S A S B S C S
13 6 12 syl B F C S A S A S B S C S
14 13 impcom A S B F C S A S B S C S
15 5 14 sylbi A B F C dom G A S B S C S
16 ndmaov ¬ A B F C dom G A G B F C = V
17 15 16 nsyl5 ¬ A S B S C S A G B F C = V
18 1 eleq2i A G B A G C dom F A G B A G C S × S
19 opelxp A G B A G C S × S A G B S A G C S
20 18 19 bitri A G B A G C dom F A G B S A G C S
21 aovvdm A G B S A B dom G
22 2 eleq2i A B dom G A B S × S
23 opelxp A B S × S A S B S
24 22 23 bitri A B dom G A S B S
25 2 eleq2i A C dom G A C S × S
26 opelxp A C S × S A S C S
27 25 26 bitri A C dom G A S C S
28 simpll A S C S A S B S A S
29 simprr A S C S A S B S B S
30 simplr A S C S A S B S C S
31 28 29 30 3jca A S C S A S B S A S B S C S
32 31 ex A S C S A S B S A S B S C S
33 27 32 sylbi A C dom G A S B S A S B S C S
34 aovvdm A G C S A C dom G
35 33 34 syl11 A S B S A G C S A S B S C S
36 24 35 sylbi A B dom G A G C S A S B S C S
37 21 36 syl A G B S A G C S A S B S C S
38 37 imp A G B S A G C S A S B S C S
39 20 38 sylbi A G B A G C dom F A S B S C S
40 ndmaov ¬ A G B A G C dom F A G B F A G C = V
41 39 40 nsyl5 ¬ A S B S C S A G B F A G C = V
42 17 41 eqtr4d ¬ A S B S C S A G B F C = A G B F A G C