Description: Contrapositive law deduction for inequality. (Contributed by NM, 11-Jan-2008) (Proof shortened by Wolf Lammen, 24-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necon4abid.1 | |- ( ph -> ( A =/= B <-> -. ps ) ) | |
| Assertion | necon4abid | |- ( ph -> ( A = B <-> ps ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | necon4abid.1 | |- ( ph -> ( A =/= B <-> -. ps ) ) | |
| 2 | notnotb | |- ( ps <-> -. -. ps ) | |
| 3 | 1 | necon1bbid | |- ( ph -> ( -. -. ps <-> A = B ) ) | 
| 4 | 2 3 | bitr2id | |- ( ph -> ( A = B <-> ps ) ) |