Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negidi.1 | |- A e. CC  | 
					|
| Assertion | negrebi | |- ( -u A e. RR <-> A e. RR )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negidi.1 | |- A e. CC  | 
						|
| 2 | negreb | |- ( A e. CC -> ( -u A e. RR <-> A e. RR ) )  | 
						|
| 3 | 1 2 | ax-mp | |- ( -u A e. RR <-> A e. RR )  |