Description: Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negsval2 | |- ( A e. No -> ( -us ` A ) = ( 0s -s A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0sno | |- 0s e. No | |
| 2 | subsval | |- ( ( 0s e. No /\ A e. No ) -> ( 0s -s A ) = ( 0s +s ( -us ` A ) ) ) | |
| 3 | 1 2 | mpan | |- ( A e. No -> ( 0s -s A ) = ( 0s +s ( -us ` A ) ) ) | 
| 4 | negscl | |- ( A e. No -> ( -us ` A ) e. No ) | |
| 5 | addslid | |- ( ( -us ` A ) e. No -> ( 0s +s ( -us ` A ) ) = ( -us ` A ) ) | |
| 6 | 4 5 | syl | |- ( A e. No -> ( 0s +s ( -us ` A ) ) = ( -us ` A ) ) | 
| 7 | 3 6 | eqtr2d | |- ( A e. No -> ( -us ` A ) = ( 0s -s A ) ) |