Metamath Proof Explorer


Theorem nfa1w

Description: Replace ax-10 in nfa1 with a substitution hypothesis. (Contributed by SN, 2-Sep-2025)

Ref Expression
Hypothesis nfa1w.x
|- ( x = y -> ( ph <-> ps ) )
Assertion nfa1w
|- F/ x A. x ph

Proof

Step Hyp Ref Expression
1 nfa1w.x
 |-  ( x = y -> ( ph <-> ps ) )
2 1 cbvalvw
 |-  ( A. x ph <-> A. y ps )
3 nfv
 |-  F/ x A. y ps
4 2 3 nfxfr
 |-  F/ x A. x ph