Metamath Proof Explorer


Theorem nfaltop

Description: Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015)

Ref Expression
Hypotheses nfaltop.1
|- F/_ x A
nfaltop.2
|- F/_ x B
Assertion nfaltop
|- F/_ x << A , B >>

Proof

Step Hyp Ref Expression
1 nfaltop.1
 |-  F/_ x A
2 nfaltop.2
 |-  F/_ x B
3 df-altop
 |-  << A , B >> = { { A } , { A , { B } } }
4 1 nfsn
 |-  F/_ x { A }
5 2 nfsn
 |-  F/_ x { B }
6 1 5 nfpr
 |-  F/_ x { A , { B } }
7 4 6 nfpr
 |-  F/_ x { { A } , { A , { B } } }
8 3 7 nfcxfr
 |-  F/_ x << A , B >>