Metamath Proof Explorer


Theorem nfaltop

Description: Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015)

Ref Expression
Hypotheses nfaltop.1 𝑥 𝐴
nfaltop.2 𝑥 𝐵
Assertion nfaltop 𝑥𝐴 , 𝐵

Proof

Step Hyp Ref Expression
1 nfaltop.1 𝑥 𝐴
2 nfaltop.2 𝑥 𝐵
3 df-altop 𝐴 , 𝐵 ⟫ = { { 𝐴 } , { 𝐴 , { 𝐵 } } }
4 1 nfsn 𝑥 { 𝐴 }
5 2 nfsn 𝑥 { 𝐵 }
6 1 5 nfpr 𝑥 { 𝐴 , { 𝐵 } }
7 4 6 nfpr 𝑥 { { 𝐴 } , { 𝐴 , { 𝐵 } } }
8 3 7 nfcxfr 𝑥𝐴 , 𝐵