Step |
Hyp |
Ref |
Expression |
1 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
2 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐷 |
3 |
1 2
|
nfaltop |
⊢ Ⅎ 𝑥 ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ V → Ⅎ 𝑥 ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
5 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
6 |
|
altopeq1 |
⊢ ( 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ ) |
7 |
5 6
|
syl |
⊢ ( 𝑥 = 𝐴 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ ) |
8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) |
9 |
|
altopeq2 |
⊢ ( 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 → ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
10 |
8 9
|
syl |
⊢ ( 𝑥 = 𝐴 → ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
11 |
7 10
|
eqtrd |
⊢ ( 𝑥 = 𝐴 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
12 |
4 11
|
csbiegf |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |