| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝐴  /  𝑥 ⦌ 𝐶 | 
						
							| 2 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝐴  /  𝑥 ⦌ 𝐷 | 
						
							| 3 | 1 2 | nfaltop | ⊢ Ⅎ 𝑥 ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ⟫ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  V  →  Ⅎ 𝑥 ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ⟫ ) | 
						
							| 5 |  | csbeq1a | ⊢ ( 𝑥  =  𝐴  →  𝐶  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 6 |  | altopeq1 | ⊢ ( 𝐶  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  →  ⟪ 𝐶 ,  𝐷 ⟫  =  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  𝐷 ⟫ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑥  =  𝐴  →  ⟪ 𝐶 ,  𝐷 ⟫  =  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  𝐷 ⟫ ) | 
						
							| 8 |  | csbeq1a | ⊢ ( 𝑥  =  𝐴  →  𝐷  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) | 
						
							| 9 |  | altopeq2 | ⊢ ( 𝐷  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  →  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  𝐷 ⟫  =  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ⟫ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑥  =  𝐴  →  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  𝐷 ⟫  =  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ⟫ ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( 𝑥  =  𝐴  →  ⟪ 𝐶 ,  𝐷 ⟫  =  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ⟫ ) | 
						
							| 12 | 4 11 | csbiegf | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ⟪ 𝐶 ,  𝐷 ⟫  =  ⟪ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ⟫ ) |