| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| 2 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐷 |
| 3 |
1 2
|
nfaltop |
⊢ Ⅎ 𝑥 ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ V → Ⅎ 𝑥 ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
| 5 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 6 |
|
altopeq1 |
⊢ ( 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑥 = 𝐴 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ ) |
| 8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) |
| 9 |
|
altopeq2 |
⊢ ( 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 → ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑥 = 𝐴 → ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
| 11 |
7 10
|
eqtrd |
⊢ ( 𝑥 = 𝐴 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |
| 12 |
4 11
|
csbiegf |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ⟪ 𝐶 , 𝐷 ⟫ = ⟪ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ⟫ ) |