Metamath Proof Explorer


Theorem sbcaltop

Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015)

Ref Expression
Assertion sbcaltop ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟫ )

Proof

Step Hyp Ref Expression
1 nfcsb1v 𝑥 𝐴 / 𝑥 𝐶
2 nfcsb1v 𝑥 𝐴 / 𝑥 𝐷
3 1 2 nfaltop 𝑥 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷
4 3 a1i ( 𝐴 ∈ V → 𝑥 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟫ )
5 csbeq1a ( 𝑥 = 𝐴𝐶 = 𝐴 / 𝑥 𝐶 )
6 altopeq1 ( 𝐶 = 𝐴 / 𝑥 𝐶 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 / 𝑥 𝐶 , 𝐷 ⟫ )
7 5 6 syl ( 𝑥 = 𝐴 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 / 𝑥 𝐶 , 𝐷 ⟫ )
8 csbeq1a ( 𝑥 = 𝐴𝐷 = 𝐴 / 𝑥 𝐷 )
9 altopeq2 ( 𝐷 = 𝐴 / 𝑥 𝐷 → ⟪ 𝐴 / 𝑥 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟫ )
10 8 9 syl ( 𝑥 = 𝐴 → ⟪ 𝐴 / 𝑥 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟫ )
11 7 10 eqtrd ( 𝑥 = 𝐴 → ⟪ 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟫ )
12 4 11 csbiegf ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟫ )