| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcsb1v |  |-  F/_ x [_ A / x ]_ C | 
						
							| 2 |  | nfcsb1v |  |-  F/_ x [_ A / x ]_ D | 
						
							| 3 | 1 2 | nfaltop |  |-  F/_ x << [_ A / x ]_ C , [_ A / x ]_ D >> | 
						
							| 4 | 3 | a1i |  |-  ( A e. _V -> F/_ x << [_ A / x ]_ C , [_ A / x ]_ D >> ) | 
						
							| 5 |  | csbeq1a |  |-  ( x = A -> C = [_ A / x ]_ C ) | 
						
							| 6 |  | altopeq1 |  |-  ( C = [_ A / x ]_ C -> << C , D >> = << [_ A / x ]_ C , D >> ) | 
						
							| 7 | 5 6 | syl |  |-  ( x = A -> << C , D >> = << [_ A / x ]_ C , D >> ) | 
						
							| 8 |  | csbeq1a |  |-  ( x = A -> D = [_ A / x ]_ D ) | 
						
							| 9 |  | altopeq2 |  |-  ( D = [_ A / x ]_ D -> << [_ A / x ]_ C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) | 
						
							| 10 | 8 9 | syl |  |-  ( x = A -> << [_ A / x ]_ C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( x = A -> << C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) | 
						
							| 12 | 4 11 | csbiegf |  |-  ( A e. _V -> [_ A / x ]_ << C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) |