| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcsb1v |
|- F/_ x [_ A / x ]_ C |
| 2 |
|
nfcsb1v |
|- F/_ x [_ A / x ]_ D |
| 3 |
1 2
|
nfaltop |
|- F/_ x << [_ A / x ]_ C , [_ A / x ]_ D >> |
| 4 |
3
|
a1i |
|- ( A e. _V -> F/_ x << [_ A / x ]_ C , [_ A / x ]_ D >> ) |
| 5 |
|
csbeq1a |
|- ( x = A -> C = [_ A / x ]_ C ) |
| 6 |
|
altopeq1 |
|- ( C = [_ A / x ]_ C -> << C , D >> = << [_ A / x ]_ C , D >> ) |
| 7 |
5 6
|
syl |
|- ( x = A -> << C , D >> = << [_ A / x ]_ C , D >> ) |
| 8 |
|
csbeq1a |
|- ( x = A -> D = [_ A / x ]_ D ) |
| 9 |
|
altopeq2 |
|- ( D = [_ A / x ]_ D -> << [_ A / x ]_ C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) |
| 10 |
8 9
|
syl |
|- ( x = A -> << [_ A / x ]_ C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) |
| 11 |
7 10
|
eqtrd |
|- ( x = A -> << C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) |
| 12 |
4 11
|
csbiegf |
|- ( A e. _V -> [_ A / x ]_ << C , D >> = << [_ A / x ]_ C , [_ A / x ]_ D >> ) |