Metamath Proof Explorer


Theorem sbcaltop

Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015)

Ref Expression
Assertion sbcaltop A V A / x C D = A / x C A / x D

Proof

Step Hyp Ref Expression
1 nfcsb1v _ x A / x C
2 nfcsb1v _ x A / x D
3 1 2 nfaltop _ x A / x C A / x D
4 3 a1i A V _ x A / x C A / x D
5 csbeq1a x = A C = A / x C
6 altopeq1 C = A / x C C D = A / x C D
7 5 6 syl x = A C D = A / x C D
8 csbeq1a x = A D = A / x D
9 altopeq2 D = A / x D A / x C D = A / x C A / x D
10 8 9 syl x = A A / x C D = A / x C A / x D
11 7 10 eqtrd x = A C D = A / x C A / x D
12 4 11 csbiegf A V A / x C D = A / x C A / x D