Metamath Proof Explorer


Theorem nfcsb1d

Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfcsb1d.1
|- ( ph -> F/_ x A )
Assertion nfcsb1d
|- ( ph -> F/_ x [_ A / x ]_ B )

Proof

Step Hyp Ref Expression
1 nfcsb1d.1
 |-  ( ph -> F/_ x A )
2 df-csb
 |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B }
3 nfv
 |-  F/ y ph
4 1 nfsbc1d
 |-  ( ph -> F/ x [. A / x ]. y e. B )
5 3 4 nfabdw
 |-  ( ph -> F/_ x { y | [. A / x ]. y e. B } )
6 2 5 nfcxfrd
 |-  ( ph -> F/_ x [_ A / x ]_ B )