Metamath Proof Explorer


Theorem nfcsb1d

Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfcsb1d.1 φ_xA
Assertion nfcsb1d φ_xA/xB

Proof

Step Hyp Ref Expression
1 nfcsb1d.1 φ_xA
2 df-csb A/xB=y|[˙A/x]˙yB
3 nfv yφ
4 1 nfsbc1d φx[˙A/x]˙yB
5 3 4 nfabdw φ_xy|[˙A/x]˙yB
6 2 5 nfcxfrd φ_xA/xB