| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfiso.1 |  |-  F/_ x H | 
						
							| 2 |  | nfiso.2 |  |-  F/_ x R | 
						
							| 3 |  | nfiso.3 |  |-  F/_ x S | 
						
							| 4 |  | nfiso.4 |  |-  F/_ x A | 
						
							| 5 |  | nfiso.5 |  |-  F/_ x B | 
						
							| 6 |  | df-isom |  |-  ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) ) ) | 
						
							| 7 | 1 4 5 | nff1o |  |-  F/ x H : A -1-1-onto-> B | 
						
							| 8 |  | nfcv |  |-  F/_ x y | 
						
							| 9 |  | nfcv |  |-  F/_ x z | 
						
							| 10 | 8 2 9 | nfbr |  |-  F/ x y R z | 
						
							| 11 | 1 8 | nffv |  |-  F/_ x ( H ` y ) | 
						
							| 12 | 1 9 | nffv |  |-  F/_ x ( H ` z ) | 
						
							| 13 | 11 3 12 | nfbr |  |-  F/ x ( H ` y ) S ( H ` z ) | 
						
							| 14 | 10 13 | nfbi |  |-  F/ x ( y R z <-> ( H ` y ) S ( H ` z ) ) | 
						
							| 15 | 4 14 | nfralw |  |-  F/ x A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) | 
						
							| 16 | 4 15 | nfralw |  |-  F/ x A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) | 
						
							| 17 | 7 16 | nfan |  |-  F/ x ( H : A -1-1-onto-> B /\ A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) ) | 
						
							| 18 | 6 17 | nfxfr |  |-  F/ x H Isom R , S ( A , B ) |