| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfiso.1 | ⊢ Ⅎ 𝑥 𝐻 | 
						
							| 2 |  | nfiso.2 | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 3 |  | nfiso.3 | ⊢ Ⅎ 𝑥 𝑆 | 
						
							| 4 |  | nfiso.4 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 5 |  | nfiso.5 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 6 |  | df-isom | ⊢ ( 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ↔  ( 𝐻 : 𝐴 –1-1-onto→ 𝐵  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦 𝑅 𝑧  ↔  ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) ) ) | 
						
							| 7 | 1 4 5 | nff1o | ⊢ Ⅎ 𝑥 𝐻 : 𝐴 –1-1-onto→ 𝐵 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 10 | 8 2 9 | nfbr | ⊢ Ⅎ 𝑥 𝑦 𝑅 𝑧 | 
						
							| 11 | 1 8 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) | 
						
							| 12 | 1 9 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑧 ) | 
						
							| 13 | 11 3 12 | nfbr | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) | 
						
							| 14 | 10 13 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑦 𝑅 𝑧  ↔  ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) | 
						
							| 15 | 4 14 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧  ∈  𝐴 ( 𝑦 𝑅 𝑧  ↔  ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) | 
						
							| 16 | 4 15 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦 𝑅 𝑧  ↔  ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) | 
						
							| 17 | 7 16 | nfan | ⊢ Ⅎ 𝑥 ( 𝐻 : 𝐴 –1-1-onto→ 𝐵  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦 𝑅 𝑧  ↔  ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) ) | 
						
							| 18 | 6 17 | nfxfr | ⊢ Ⅎ 𝑥 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) |