Metamath Proof Explorer


Theorem nfiund

Description: Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019) Add disjoint variable condition to avoid ax-13 . See nfiundg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfiund.1
|- F/ x ph
nfiund.2
|- ( ph -> F/_ y A )
nfiund.3
|- ( ph -> F/_ y B )
Assertion nfiund
|- ( ph -> F/_ y U_ x e. A B )

Proof

Step Hyp Ref Expression
1 nfiund.1
 |-  F/ x ph
2 nfiund.2
 |-  ( ph -> F/_ y A )
3 nfiund.3
 |-  ( ph -> F/_ y B )
4 df-iun
 |-  U_ x e. A B = { z | E. x e. A z e. B }
5 nfv
 |-  F/ z ph
6 3 nfcrd
 |-  ( ph -> F/ y z e. B )
7 1 2 6 nfrexd
 |-  ( ph -> F/ y E. x e. A z e. B )
8 5 7 nfabdw
 |-  ( ph -> F/_ y { z | E. x e. A z e. B } )
9 4 8 nfcxfrd
 |-  ( ph -> F/_ y U_ x e. A B )