Metamath Proof Explorer


Theorem nfiund

Description: Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019) Add disjoint variable condition to avoid ax-13 . See nfiundg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfiund.1 𝑥 𝜑
nfiund.2 ( 𝜑 𝑦 𝐴 )
nfiund.3 ( 𝜑 𝑦 𝐵 )
Assertion nfiund ( 𝜑 𝑦 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 nfiund.1 𝑥 𝜑
2 nfiund.2 ( 𝜑 𝑦 𝐴 )
3 nfiund.3 ( 𝜑 𝑦 𝐵 )
4 df-iun 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 }
5 nfv 𝑧 𝜑
6 3 nfcrd ( 𝜑 → Ⅎ 𝑦 𝑧𝐵 )
7 1 2 6 nfrexd ( 𝜑 → Ⅎ 𝑦𝑥𝐴 𝑧𝐵 )
8 5 7 nfabdw ( 𝜑 𝑦 { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } )
9 4 8 nfcxfrd ( 𝜑 𝑦 𝑥𝐴 𝐵 )