Step |
Hyp |
Ref |
Expression |
1 |
|
nfrelp.1 |
|- F/_ x H |
2 |
|
nfrelp.2 |
|- F/_ x R |
3 |
|
nfrelp.3 |
|- F/_ x S |
4 |
|
nfrelp.4 |
|- F/_ x A |
5 |
|
nfrelp.5 |
|- F/_ x B |
6 |
|
df-relp |
|- ( H RelPres R , S ( A , B ) <-> ( H : A --> B /\ A. y e. A A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) ) ) ) |
7 |
1 4 5
|
nff |
|- F/ x H : A --> B |
8 |
|
nfcv |
|- F/_ x y |
9 |
|
nfcv |
|- F/_ x z |
10 |
8 2 9
|
nfbr |
|- F/ x y R z |
11 |
1 8
|
nffv |
|- F/_ x ( H ` y ) |
12 |
1 9
|
nffv |
|- F/_ x ( H ` z ) |
13 |
11 3 12
|
nfbr |
|- F/ x ( H ` y ) S ( H ` z ) |
14 |
10 13
|
nfim |
|- F/ x ( y R z -> ( H ` y ) S ( H ` z ) ) |
15 |
4 14
|
nfralw |
|- F/ x A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) ) |
16 |
4 15
|
nfralw |
|- F/ x A. y e. A A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) ) |
17 |
7 16
|
nfan |
|- F/ x ( H : A --> B /\ A. y e. A A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) ) ) |
18 |
6 17
|
nfxfr |
|- F/ x H RelPres R , S ( A , B ) |