Metamath Proof Explorer


Theorem nfrelp

Description: Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Hypotheses nfrelp.1
|- F/_ x H
nfrelp.2
|- F/_ x R
nfrelp.3
|- F/_ x S
nfrelp.4
|- F/_ x A
nfrelp.5
|- F/_ x B
Assertion nfrelp
|- F/ x H RelPres R , S ( A , B )

Proof

Step Hyp Ref Expression
1 nfrelp.1
 |-  F/_ x H
2 nfrelp.2
 |-  F/_ x R
3 nfrelp.3
 |-  F/_ x S
4 nfrelp.4
 |-  F/_ x A
5 nfrelp.5
 |-  F/_ x B
6 df-relp
 |-  ( H RelPres R , S ( A , B ) <-> ( H : A --> B /\ A. y e. A A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) ) ) )
7 1 4 5 nff
 |-  F/ x H : A --> B
8 nfcv
 |-  F/_ x y
9 nfcv
 |-  F/_ x z
10 8 2 9 nfbr
 |-  F/ x y R z
11 1 8 nffv
 |-  F/_ x ( H ` y )
12 1 9 nffv
 |-  F/_ x ( H ` z )
13 11 3 12 nfbr
 |-  F/ x ( H ` y ) S ( H ` z )
14 10 13 nfim
 |-  F/ x ( y R z -> ( H ` y ) S ( H ` z ) )
15 4 14 nfralw
 |-  F/ x A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) )
16 4 15 nfralw
 |-  F/ x A. y e. A A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) )
17 7 16 nfan
 |-  F/ x ( H : A --> B /\ A. y e. A A. z e. A ( y R z -> ( H ` y ) S ( H ` z ) ) )
18 6 17 nfxfr
 |-  F/ x H RelPres R , S ( A , B )