Metamath Proof Explorer


Theorem nfrelp

Description: Bound-variable hypothesis builder for a relation-preserving function. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Hypotheses nfrelp.1 𝑥 𝐻
nfrelp.2 𝑥 𝑅
nfrelp.3 𝑥 𝑆
nfrelp.4 𝑥 𝐴
nfrelp.5 𝑥 𝐵
Assertion nfrelp 𝑥 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 )

Proof

Step Hyp Ref Expression
1 nfrelp.1 𝑥 𝐻
2 nfrelp.2 𝑥 𝑅
3 nfrelp.3 𝑥 𝑆
4 nfrelp.4 𝑥 𝐴
5 nfrelp.5 𝑥 𝐵
6 df-relp ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 𝑅 𝑧 → ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) ) ) )
7 1 4 5 nff 𝑥 𝐻 : 𝐴𝐵
8 nfcv 𝑥 𝑦
9 nfcv 𝑥 𝑧
10 8 2 9 nfbr 𝑥 𝑦 𝑅 𝑧
11 1 8 nffv 𝑥 ( 𝐻𝑦 )
12 1 9 nffv 𝑥 ( 𝐻𝑧 )
13 11 3 12 nfbr 𝑥 ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 )
14 10 13 nfim 𝑥 ( 𝑦 𝑅 𝑧 → ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) )
15 4 14 nfralw 𝑥𝑧𝐴 ( 𝑦 𝑅 𝑧 → ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) )
16 4 15 nfralw 𝑥𝑦𝐴𝑧𝐴 ( 𝑦 𝑅 𝑧 → ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) )
17 7 16 nfan 𝑥 ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 𝑅 𝑧 → ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) ) )
18 6 17 nfxfr 𝑥 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 )