| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfriotad.1 |
|- F/ y ph |
| 2 |
|
nfriotad.2 |
|- ( ph -> F/ x ps ) |
| 3 |
|
nfriotad.3 |
|- ( ph -> F/_ x A ) |
| 4 |
|
df-riota |
|- ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) ) |
| 5 |
|
nfnae |
|- F/ y -. A. x x = y |
| 6 |
1 5
|
nfan |
|- F/ y ( ph /\ -. A. x x = y ) |
| 7 |
|
nfcvf |
|- ( -. A. x x = y -> F/_ x y ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x y ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x A ) |
| 10 |
8 9
|
nfeld |
|- ( ( ph /\ -. A. x x = y ) -> F/ x y e. A ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
| 12 |
10 11
|
nfand |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) ) |
| 13 |
6 12
|
nfiotad |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 14 |
13
|
ex |
|- ( ph -> ( -. A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) ) |
| 15 |
|
nfiota1 |
|- F/_ y ( iota y ( y e. A /\ ps ) ) |
| 16 |
|
eqidd |
|- ( A. x x = y -> ( iota y ( y e. A /\ ps ) ) = ( iota y ( y e. A /\ ps ) ) ) |
| 17 |
16
|
drnfc1 |
|- ( A. x x = y -> ( F/_ x ( iota y ( y e. A /\ ps ) ) <-> F/_ y ( iota y ( y e. A /\ ps ) ) ) ) |
| 18 |
15 17
|
mpbiri |
|- ( A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 19 |
14 18
|
pm2.61d2 |
|- ( ph -> F/_ x ( iota y ( y e. A /\ ps ) ) ) |
| 20 |
4 19
|
nfcxfrd |
|- ( ph -> F/_ x ( iota_ y e. A ps ) ) |