Metamath Proof Explorer


Theorem nfunidALT

Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfunidALT.1
|- ( ph -> F/_ x A )
Assertion nfunidALT
|- ( ph -> F/_ x U. A )

Proof

Step Hyp Ref Expression
1 nfunidALT.1
 |-  ( ph -> F/_ x A )
2 abidnf
 |-  ( F/_ x A -> { y | A. x y e. A } = A )
3 2 unieqd
 |-  ( F/_ x A -> U. { y | A. x y e. A } = U. A )
4 nfaba1
 |-  F/_ x { y | A. x y e. A }
5 4 nfuni
 |-  F/_ x U. { y | A. x y e. A }
6 1 3 5 nfded
 |-  ( ph -> F/_ x U. A )