Metamath Proof Explorer


Theorem nfunidALT

Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfunidALT.1 ( 𝜑 𝑥 𝐴 )
Assertion nfunidALT ( 𝜑 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 nfunidALT.1 ( 𝜑 𝑥 𝐴 )
2 abidnf ( 𝑥 𝐴 → { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 } = 𝐴 )
3 2 unieqd ( 𝑥 𝐴 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 } = 𝐴 )
4 nfaba1 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 }
5 4 nfuni 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦𝐴 }
6 1 3 5 nfded ( 𝜑 𝑥 𝐴 )