Metamath Proof Explorer
		
		
		
		Description:  Deduction version of nfuni .  (Contributed by NM, 19-Nov-2020)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | nfunidALT.1 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝐴 ) | 
				
					|  | Assertion | nfunidALT | ⊢  ( 𝜑  →  Ⅎ 𝑥 ∪  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfunidALT.1 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 2 |  | abidnf | ⊢ ( Ⅎ 𝑥 𝐴  →  { 𝑦  ∣  ∀ 𝑥 𝑦  ∈  𝐴 }  =  𝐴 ) | 
						
							| 3 | 2 | unieqd | ⊢ ( Ⅎ 𝑥 𝐴  →  ∪  { 𝑦  ∣  ∀ 𝑥 𝑦  ∈  𝐴 }  =  ∪  𝐴 ) | 
						
							| 4 |  | nfaba1 | ⊢ Ⅎ 𝑥 { 𝑦  ∣  ∀ 𝑥 𝑦  ∈  𝐴 } | 
						
							| 5 | 4 | nfuni | ⊢ Ⅎ 𝑥 ∪  { 𝑦  ∣  ∀ 𝑥 𝑦  ∈  𝐴 } | 
						
							| 6 | 1 3 5 | nfded | ⊢ ( 𝜑  →  Ⅎ 𝑥 ∪  𝐴 ) |