Metamath Proof Explorer
Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
nfunidALT.1 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
|
Assertion |
nfunidALT |
⊢ ( 𝜑 → Ⅎ 𝑥 ∪ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfunidALT.1 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
2 |
|
abidnf |
⊢ ( Ⅎ 𝑥 𝐴 → { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } = 𝐴 ) |
3 |
2
|
unieqd |
⊢ ( Ⅎ 𝑥 𝐴 → ∪ { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } = ∪ 𝐴 ) |
4 |
|
nfaba1 |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } |
5 |
4
|
nfuni |
⊢ Ⅎ 𝑥 ∪ { 𝑦 ∣ ∀ 𝑥 𝑦 ∈ 𝐴 } |
6 |
1 3 5
|
nfded |
⊢ ( 𝜑 → Ⅎ 𝑥 ∪ 𝐴 ) |